Acceleration of Galactic Cosmic Rays

Siming Liu Southwest Jiaotong University

Houdun Zeng Purple Mountain Observatory

高海拔宇宙後観测站

The Second LHAASO Symposium, HK, March 21-25 2025

Southwest Jiaotong University

Outline

- 1. Shocks of Supernova Remnants (SNRs)
- 2. Some Extreme Acceleration Processes
- 3. Evidence for Extreme Acceleration of PeV Cosmic Rays (CRs) from LHAASO
- 4. Conclusions

1: Cosmic Ray Spectra and Anisotropy

1: Origin of Cosmic Rays

1: Spectra of 46 SNRs before LHAASO

Multiwavelength spectra of 46 SNRs normalized

at 1 TeV

1: Evidence for CRs escaping from SNRs

THE ASTROPHYSICAL JOURNAL LETTERS, 749:L35 (5pp), 2012 April 20 © 2012. The American Astronomical Society. All rights reserved. Printed in the U.S.A.

doi:10.1088/2041-8205/749/2/L35

FERMI LARGE AREA TELESCOPE DISCOVERY OF GeV GAMMA-RAY EMISSION FROM THE VICINITY OF SNR W44

YASUNOBU UCHIYAMA^{1,2,8}, STEFAN FUNK^{1,2}, HIDEAKI KATAGIRI³, JUNICHIRO KATSUTA¹, MARIANNE LEMOINE-GOUMARD⁴, HIROYASU TAJIMA^{2,5}, TAKAAKI TANAKA², AND DIEGO F. TORRES^{6,7}

Discovery of very high energy gamma-ray emission coincident with molecular clouds in the W 28 (G6.4–0.1) field*

E Abaranian 13 A C Althranianian² A B Baran Bashi³ B Baharal⁴ M Bailiaka⁴ W Banhawi D Baranix⁴

1: Diffusive Shock Acceleration in SNRs

The Second LHAASO Symposium, HK,

March 21-25 2025

1: 7 SNRs Detected by LHAASO

The higher energy spectra are softer (but harder than an exponential cutoff)

1: An example of time-dependent DSA

EFFICIENT PRODUCTION OF HIGH-ENERGY NONTHERMAL PARTICLES DURING MAGNETIC RECONNECTION IN A MAGNETICALLY DOMINATED ION-ELECTRON PLASMA

FAN GUO¹, XIAOCAN LI^{1,2}, HUI LI¹, WILLIAM DAUGHTON¹, BING ZHANG³, NICOLE LLOYD-RONNING¹, YI-HSIN LIU⁴, HAOCHENG ZHANG^{1,5}, AND WEI DENG^{1,3} Los Alamos National Laboratory, Los Alamos, NM 87545, USA; guofan.ustc@gmail.com

2: Shock Drift Acceleration

THE ASTROPHYSICAL JOURNAL, 255:716-720, 1982 April 15 © 1982. The American Astronomical Society. All rights reserved. Printed in U.S.A.

PARTICLE DRIFT, DIFFUSION, AND ACCELERATION AT SHOCKS

郝宇飞,陆全明,高新亮等.等离子体湍动对准垂直激波中粒子加速的影响.地球物理学报,2013,56(7): - ,doi:10.6038/ cjg20130701.

Hao Y F, Lu Q M, Gao X L, et al. Particle acceleration at shock waves with composite turbulence. *Chinese J. Geophys.* (in Chinese), 2013, 56(7); - ,doi;10.6038/cjg20130701.

等离子体湍动对准垂直激波中粒子加速的影响

郝宇飞,陆全明,高新亮,单立灿,王 水

2: PeV Particle Acceleration in PWNS

MNRAS 478, 926–931 (2018) Advance Access publication 2018 May 5 doi:10.1093/mnras/sty1159

Pulsar Wind Nebulae inside Supernova Remnants as Cosmic-Ray PeVatrons

Figure 2. Energy spectra of reaccelerated particles for Model A. The blackdashed and the red solid histograms are energy spectra at $t = t_c$ and t_{end} , respectively. The initial energy is 0.1 PeV.

3: LHAASO catalog

10²

10₁ Counts/pixel

100

10⁰

10-2

3: Diffuse Gamma-ray Emission with KM2A

3: Diffuse Gamma-ray Emission with WCDA

TABLE I. SBPL fitting parameters of the wide-band diffuse emission measured by WCDA and KM2A.

Region	ϕ_0 at 10 TeV	α	β	$E_{\rm br}$
C	$(10^{-13} \text{ TeV}^{-1} \text{ cm}^{-2} \text{ s}^{-1} \text{ sr}^{-1})$			(TeV)
$15^{\circ} < l < 125^{\circ}$ (inner)	$8.88 \pm 0.53_{stat}$	$-2.66 \pm 0.05_{stat}$	$-3.13 \pm 0.08_{stat}$	$32.84 \pm 11.16_{stat}$
$125^{\circ} < l < 235^{\circ}$ (outer)	$3.84 \pm 0.37_{stat}$	$-2.72\pm0.10_{stat}$	$-2.92\pm0.10_{stat}$	$27.86 \pm 22.49_{stat}$

3: Possible explanation of the diffuse emission

There appears to be three components: GeV dominated by acceleration of slow shocks TeV dominated by fast shocks PeV shock drift acceleration?

 10^{4}

000

100 ±

• AMS-02 p

▲ JACEE p

▲ JACEE He

△ CREAM p

100

10

 $R^{2.7}J/(m^{-2}s^{-1}sr^{-1}GV^{1.7})$

PWNs, Young Massive Star Clusters, micro quasars?

• CREAM-III p

• Tibet $AS\gamma p$

Tibet $AS\gamma$ He

□ KASCADE p

 10^{4}

R/GV

1000

The Second LHAASO Symposium, HK, March 21-25 2025

四川天文学会2024年会,成都

Conclusions

Extreme acceleration processes dominate the acceleration of the highest energy particles in galactic ultra-high-energy sources

Shock drift acceleration may play an important role in the acceleration of PeV cosmic rays

Parallel electric fields may dominate the PeV particle acceleration in PWNe and Jets

Association with ATNF pulsars

- 65 1LHAASO sources with pulsar nearby <0.5°.
- 35 associations with chance coincide probability <1%. (13 labeled as PWN or Halo in TeVCat)
- 22 new possible PWN/TeV Halo

Are Supernova Remnants PeVatrons?

The Second LHAASO Symposium, HK,

March 21-25 2025

1LHAASO J1912+1014

PeVatrons

- 51% (35/69) 1-25TeV sources are UHE sources.
- 57% (43/75) >25TeV sources are UHE sources.
- 19% (8/43) UHE sources are not detected at 1-25TeV (new class?).

UHE gamma-ray sources

 The position and extension achieved by KM2A at >25 TeV are used.
Sources with significance >4σ at >100 TeV are labeled as

UHE sources

>2 Detected above 100 TeV

Article

Ultrahigh-energy photons up to 1.4 petaelectronvolts from 12 γ-ray Galactic sources

3 Detected up to 100 TeV

2 Detected up to 10 TeV

For n=10 cm-3, rule out an injection index <2.5

Mon. Not. R. Astron. Soc. 427, 91–102 (2012)

Escape of cosmic-ray electrons from supernova remnants

Yutaka Ohira,^{1*} Ryo Yamazaki,¹ Norita Kawanaka² and Kunihito Ioka^{3,4}

Figure 2. The same as Fig. 1, but for $B^2 \propto u_{\rm sh}^2$ or $u_{\rm sh}^3$.

2025/3/18

The Second LHAASO Symposium, HK, March 21-25 2025

Evidence of Supernova Remnant W51C Accelerating Cosmic Rays to Sub-PeV Energies Unveiled by LHAASO

Evidence of Supernova Remnant W51C Accelerating Cosmic Rays to Sub-PeV Energies Unveiled by LHAASO

	α		$E_{\rm cut}$	$E_{\rm cut}$ [TeV]		$\Delta \alpha$		$E_{\rm br} \; [{\rm GeV}]$		BIC
	Best	Mean	Best	Mean	-	Best	Mean	Best	Mean	
Model 0	2.51	$2.51_{-0.01}^{+0.01}$	332	330_{-41}^{+47}		-	-	-	-	40.53
Model 1	2.53	$2.53_{-0.01}^{+0.01}$	400	400_{-56}^{+68}		-	-	-	-	39.41
Model 2	2.55	$2.56_{-0.02}^{+0.04}$	393	412_{-63}^{+89}		0.15	$0.18\substack{+0.07 \\ -0.06}$	87	104_{-74}^{+548}	37.25
Model 3	2.51	$2.51_{-0.01}^{+0.01}$	413	419_{-65}^{+85}		0.29	$0.45_{-0.18}^{+0.27}$	6.6	$3.8^{+3.0}_{-1.7}$	38.18
Model 4	2.51	$2.52_{-0.01}^{+0.01}$	263	262^{+39}_{-34}		-	-	-	-	43.36

2: Radio/X-ray obs Y Cygni SNR

The 1420-MHz image

The Second LHAASO Symposium, HK, March 21-25 2025

MNRAS 436, 968–977 (2013), Hui et al. ApJ, 799, 76, (2015)

2: High Energy Observations

VERITAS >320GeV Ra=305°.02, Dec= 40° .76; Extension=0.23°

MAGIC >250GeV Ra=304°.89, Dec= 40° .85; Extension=0°.16

²AHU, E., et al. 2013, ApJ, 770, 93^{ond LHAASO Symposium, HK, March ²¹MAGIC, 2023, AA arXiv:2010.15854}

2: Fermi Observations

Right Ascension (J2000)

2: LHAASO Results

2: Hadronic vs Leptonic Models

Hadronic with an exponential cutoff of 10TeV (dotted) a break at 4TeV (solid) Index 2.1->3.1

Leptonic with a $\sim 17 \mu G B$

²⁰²Zeng et al. ApJ, 910, 78, (2021)^{3/18}

Liu et al. RMPP, 6, 19, (2022)

3: SNR G150

Fitted with two Gaussians: One is spatially coincident with the radio and Fermi-LAT observation (G150.3+4.5); another is very closed the unidentified source 4FGL J0426.5+5434.

(150.38, 4.47), extension =1.45; (150.9, 3.79), extension =0.26

The distance of CO emission (MWISP): 0.8 kpc, and a uniform density: ~ 1.0 cm⁻³, with an age: $\leq 1.3 \times 10^4$ yr.

3: SNR G150

G150.3+4.5

The SEDs at 1—400 TeV can be fitted with log-parabola models.

 $\mathrm{d}N/\mathrm{d}E = J_0 \left(E/E_0\right)^{-\alpha-\beta\log(E/E_0)}$

Scenario A: sync.+ SSC from SNR G150.3+4.5 and PWN, respectively.

Scenario B: sync. + SSC from SNR G150.3+4.5; Escaped CR interacting with MC, and shock colliding with MC.

3: G150.3+4.5

The Second LHAASO Symposium, HK, March 21-25 2025

3: Boomerang SNR J2229+6114(G106.3+2.7)

© 2001. The American Astronomical Society, All rights reserved, Printed in U.S.A

TABLE 1 PARAMETERS OF PSR J2229+6114

Parameter Value

22 ^h 29 ^m 05 ^s 28(7)			
$+61^{\circ}14'09''.3(5)$			
106.65			
2.95			
0.05162357393(6)			
$7.827(2) \times 10^{-14}$			
51980.0			
200(10)			
~3			
2.2×10^{37}			
10460			
2.0×10^{12}			

PSR J2229+6114: DISCOVERY OF AN ENERGETIC YOUNG PULSAR IN THE FRROR BOX OF THE EGRET SOURCE 3EG J2227+6122 J. P. HALPERN, F. CAMILO, E. V. GOTTHELF, AND D. J. HELFAND

STAR FORMATION IN A COMPLEX ENVIRONMENT ROLAND KOTHES,¹ BÜLENT UYANIKER,¹ AND SERGE PINEAULT²

3: SNR G106.3+2.7, G35.6-0.4

Conclusions

- Observation of Cas A has been published
- Manuscripts on W51C and gamma cygni are to be submitted
- Manuscripts on G150, G106, G35.6 should be submitted by the next collaboration meeting
- G69.7, HESS J1912, LHAASO J2108, J0341, G57.2, G65.1, G205 should also be analyzed

3: Fermi and CO

3: X-ray Observations

Nonthernal X-ray emission is detected both from the head close to the PWN and the tail region

Ge, et al. Innovation, 2021, 2, 100118