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Background
Fine-tuning in everyday life

We know that showers that require fine-tuning are bad showers!
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Background
Fine-tuning in physics

In high-energy physics, a theory is considered fine-tuned or unnatural if small
variations in its parameters result in dramatic changes in its predictions. For reviews,
see ref. [1–3]

Fine-tuning in a scientific theory is like a cry of dis-
tress from nature, complaining that something needs
to be better explained
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Background
Hierarchy problem

Higgs mass parameter must be fine-tuned. This is the hierarchy problem [4–8]

m2 ≃ m0
2 +M2

UV

Require fine-tuning of bare mass and loop correction ∼ M2
UV such thatm2 ≪ M2

UV

Decades searching for solutions — e.g. supersymmetry [9–11], large extra
dimensions [12] and technicolor [4] — that canceled UV corrections or eliminated any
UV scales
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Background
Cosmological constant

Cosmological constant requires fine-tuning— ρ ≲ 10−121 but corrections from known
physics are at least 60 orders of magnitude greater [13]

This level of fine-tuning is intolerable, and theorists have been
working hard to find a better way to explain why the amount of dark
energy is so much smaller than that suggested by our calculations
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Background
History of fine-tuning

▶ 1934—Weisskopf’s calculation of
electron self-energy [14]

▶ 1938— Dirac’s large numbers
hypothesis [15]

▶ 1973—Wilson understanding of
effective field theory [16]

▶ 1974— Gaillard and Lee predict charm
quark mass [17]

▶ 1988—Weinberg makes anthropic
argument [18]

5



Background
Popularity of fine-tuning — data from INSPIRE

▶ 1974— first hit by Georgi [19]

▶ 1979— ’t Hooft [20]

▶ 1987— Barbieri-Giudice measure [21]

▶ 2000— fine-tuning at LEP [22]

▶ 2006— pre-LHC forecasts

▶ 2010 onward— LHC-era
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Background
Measures of fine-tuning

Fine-tuning of electroweak scale usually quantified by sensitivity measure [21, 23],
e.g. Barbieri-Giudice (BG)

∆BG =

∣∣∣∣d lnMZ

d ln ai

∣∣∣∣ = ∣∣∣∣ aiMZ

dMZ

dai

∣∣∣∣
We could combine them by maximizing across parameters or summing in quadrature.
Why though?What’s the connection between these measures and plausible models?
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Background
Fine-tuning at LEP

Fine-tuning price of LEP [22, 24–26] — allowed points show∆BG ≳ 100
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Background
Fine-tuning at the LHC

Fine-tuning price of the LHC [27, 28] — allowed points show∆BG ≳ 1000, except in
focus-point region

There are, thus, now criticisms and doubts about fine-tuning [29] 9



Recent developments
Statistical interpretation

Fine-tuning connected to probability of cancellations [30–35] and statistical
inference [36–47]

Plausibility is updated by data via Bayes’ theorem

p(A |B) = p(B |A)
p(B)

· p(A)

Contrasts with frequentist probability — frequency with which repeatable event occur
in repeat trials [48]
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Recent developments
Bayes factor

Wewant to find which model is most plausible in light of data. The relative
plausibility is called the posterior odds [49, 50]

p(Mb |D)
p(Ma |D)

=
p(D |Mb)

p(D |Ma)
× p(Mb)

p(Ma)

Posterior odds = Bayes factor× Prior odds

The Bayes factor updates the prior odds to the posterior odds. This requires more than
one model
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Recent developments
Bayes factor surface [56]

The Bayes factor surface shows the change in plausibility of a model as a function of
that model’s parameters relative to a reference model

B(θ) =
p(D |M, θ)

p(D |M0)

This is a new way to understand the impact of experimental measurements; see
ref. [51–55] for recent related works in other contexts
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Recent developments
Information theory

The Kullback-Leibler (KL) divergence between the prior and the posterior [57]

DKL ≡
∫

p(ϕ |MZ) ln
[
p(ϕ |MZ)

π(ϕ)

]
dϕ

This is a measure of the extra information required about a parameter to fit the Z
mass [58]
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Recent developments
Equivalence [59]

▶ Model of new physics with parameters θ, e.g. SUSY
▶ Exchange one model parameter for the Zmass, e.g. µ-parameter
▶ Reference model withMZ as an input parameter

We found a link between the BG measure, statistics, and information theory

B(θ) = e△DKL = ∆BG

Bayes factor surface = Relative information = BG measure

… for the parameter that was exchanged for the Z mass
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Recent developments
Interpretations of BG measure

▶ Statistical— the BG measure shows the Bayes factor surface versus an untuned
model —measures the change in plausibility of a model relative to an untuned model
in light of the Z mass measurement

▶ Information-theoretic— the BG measure shows the compression versus an
untuned model —measures the exponential of the extra information, measured in
nats, relative to an untuned model that you must supply about a parameter in order to
fit the Z mass
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Example
CMSSM/mSUGRA
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∆µ = B and ln ∆µ = 4D
∆µ & 5000

ln2 ∆µ & 12 bits
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∆µ & 300

ln2 ∆µ & 8 bits
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ln2 ∆µ & 6 bits

∆µ & 30

ln2 ∆µ & 4 bits

∆µ & 10

ln2 ∆µ & 3 bits

∆µ . 10

ln2 ∆µ . 3 bits

The traditional BG measure is equivalent to

▶ Bayes factor surface relative to untuned model
— CMSSM points disfavored by more than factor
300

▶ Extra information that must be specified about
a parameter — at least 6 extra bits of
information required about the µ-parameter

… everywhere except in the narrow focus point strip where∆BG ≤ 10
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Example
CMSSM/mSUGRA
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The Bayes factor surface for themh ≃ 125 GeV
Higgs mass measurement

▶ Computed relative to a reference model —
model that predicts mh = 125GeV with no tuning

▶ Requiresm0 ≫ TeV andm1/2 ≫ TeV — except in
narrow focus-point

How can we combine the Higgs mass measurement with the BG measure?
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Example
CMSSM/mSUGRA
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Bayes factor surfaces from Z and Higgs mass
measurements can be multipied

▶ The Z and Higgs mass measurements select
narrow focus-point strip — disfavoured, but only
by B ≤ 10

▶ … and rule out other choices — disfavored by at
least B > 100

The BG measure should not be thought of as a χ2, but as a Bayes factor
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Relevance
Today & at the LHC

Predictions from naturalness continue to guide searches for new physics

▶ Searches for light stops e.g. [60, 61]

▶ Searches for light higgsino-like neutralinos and charginos & compressed spectra
e.g. [62–64]

Novel strategies for hidden naturalness

▶ Compressed spectra

▶ R-parity violation
▶ Blind spots & secluded sectors
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Relevance
CEPC era

▶ Fine-tuning a major motivation for CEPC and SppS in CDR [65]

▶ Neutral naturalness probed through ZZh precision — reach 3TeV in twin Higgs and
1TeV in folded SUSY models [65]

▶ Exploration of higgsino world at CEPC [66] — possible through ee → WW to
exclude µ ≲ 210GeV at

√
s = 240GeV

▶ Higgsino or bino-like direct production [67] — reach limit
√
s/2

▶ Indirect constraints from precision Higgs in combination with other limits [68, 69]
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Conclusions

▶ Doubts raised about fine-tuning — arbitrariness, lack of logical foundation &
negative results from LEP and LHC

▶ There are, however, precise interpretations of the fine-tuning measure

— Statistical — measures the change in plausibility of a model relative to an
untuned model in light of the Z mass measurement

— Information-theoretic — measures the extra information that you must
supply about a parameter in order to fit the Z mass

▶ Fine-tuning thus a legitimate guide for new physics

▶ Motivating search strategies at the LHC and should play role at CEPC
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