Probing Neutral Triple Gauge Couplings via $Z\gamma(\ell^+\ell^-\gamma)$ Production at e^+e^- Colliders

Danning Liu, Rui-Qing Xiao, Shu Li, John Ellis, Hong-Jian He, Rui Yuan
 [a] Tsung-Dao Lee Institute, Shanghai Jiao Tong University
 [b] CERN
 [c] King' s College London

SUTU

B How to Probe New Physics

• Two general ways to probe new physics : new particles or new interactions

Standard Model Effective Field Theory

- Standard Model Effective Field Theory a model-independent way to explore new physics beyond the SM
 - Higher-dimensional operators constrained by $SU(2) \times U(1)$ symmetry, contributing to new physics :
 - Dimension-8 contributions scaled by quadratic power of new physics scale :

 $\Delta \mathcal{L}_{dim8} = \sum_{i} \frac{\widetilde{c_j}}{\widetilde{\Lambda}^4} O_i = \sum_{i} \frac{sign(\widetilde{c_j})}{\Lambda_j^4} O_j$

- Neutral Triple Gauge Couplings (nTGCs) : $Z\gamma Z^*$, $Z\gamma\gamma^*$
- Constrain Wilson coefficients with global analysis of experiment data
 - Non-zero *c_i* would indicate any BSM : Masses, spins, quantum number of new particles ?

Phys.Rev.D 107 035005

Theoretical basis :

Phys.Rev.D 108 L111704

Sci.China Phys.Mech.Astro 64 221062 (2021)

Anomalous Couplings Beyond the SM

- Anomalous coupling framework
 - EFT higher-dimension operators

 $\mathcal{L} = \mathcal{L}_{SM} + \sum_{d>4} \sum_{i} \frac{c_i^d}{\Lambda^{d-4}} O_i^d$

- Vector approach by adding new degrees of freedom in the SM Lagrangian
 - Adding new interaction term to introduce anomalous triple gauge couplings
 - Comparable with different experimental results

Diagram of $e^+e^- \rightarrow Z\gamma \rightarrow \ell^+\ell^-\gamma$: nTGC s-channel

Frontier of Physics 20 (2025) 12501, no.1

Introduction to nTGCs

 $h_4^Z = \frac{c_W}{s_W} h_4^{\gamma}$

- nTGCs : forbidden at SM tree level but first arise from dimension-8 contributions
- Effective Field approach
 - Definitions of pure gauge operators of dimension-8 that contributed to nTGCs and measured in this study :

$$g\mathcal{O}_{G+} = \widetilde{B}_{\mu\nu}W^{a\mu\rho}(D_{\rho}D_{\lambda}W^{a\nu\lambda} + D^{\nu}D^{\lambda}W^{a}_{\lambda\rho}),$$

$$g\mathcal{O}_{G-} = \widetilde{B}_{\mu\nu}W^{a\mu\rho}(D_{\rho}D_{\lambda}W^{a\nu\lambda} - D^{\nu}D^{\lambda}W^{a}_{\lambda\rho}),$$

$$\mathcal{O}_{\widetilde{B}W} = i H^{\dagger}\widetilde{B}_{\mu\nu}W^{\mu\rho}\{D_{\rho}, D^{\nu}\}H + h.c.,$$

$$e^{+}$$

• Effective Vertex approach $\Gamma_{Z\gamma V^*}^{\alpha\beta\mu(8)}(q_1, q_2, q_3) = \frac{e(q_3^2 - M_V^2)}{M_Z^2} \left[\left(h_3^V + h_5^V \frac{q_3^2}{M_Z^2} \right) q_{2\nu} \epsilon^{\alpha\beta\mu\nu} + \frac{h_4^V}{M_Z^2} q_2^{\alpha} q_{3\nu} q_{2\sigma} \epsilon^{\alpha\beta\mu\nu\sigma} \right]$

• We denote :
$$h_4^V = 2h_5^V$$
 $h_4 = -\frac{\operatorname{sign}(\tilde{c}_{G+})}{\Lambda_{G+}^4} \frac{v^2 M_Z^2}{s_W^c w} \equiv \frac{r_4}{[\Lambda_{G+}^4]}$, $h_3^V = 0$, for \mathcal{O}_{G+} ,

$$h_3^Z = \frac{\operatorname{sign}(\tilde{c}_{\widetilde{B}W})}{\Lambda_{\widetilde{B}W}^4} \frac{v^2 M_Z^2}{2s_W c_W} \equiv \frac{r_3^Z}{[\Lambda_{\widetilde{B}W}^4]} , \qquad \qquad h_3^\gamma, h_4^V = 0, \qquad \qquad \text{for } \mathcal{O}_{\widetilde{B}W} ,$$

$$h_3^{\gamma} = -\frac{{\rm sign}(\tilde{c}_{G-})}{\Lambda_{G-}^4}\, \frac{v^2 M_Z^2}{2c_W^2} \equiv \frac{r_3^{\gamma}}{[\Lambda_{G-}^4]}\,. \qquad \qquad h_3^Z, h_4^V = 0\,, \qquad \qquad {\rm for}\; \mathcal{O}_{G-}\;,$$

Circular Electron Positron Collider

- Circular Electron Positron Collider (CEPC)
 - First proposed by China in 2013
 - Higgs / W / Z factory
- Aiming to reach unpredecented accuracy
 - Higgs properties
 - Electroweak interaction parameters
 - QCD and Flavour physics
 - New physics beyond the Standard Model, such as anomalous gauge couplings

Our Focus !

- Experimental configurations:
 - Full simulation with CEPC official software (V4)
 - $\sqrt{s} = 240$ GeV, with an integrated luminosity of 20 ab^{-1}
 - Signal sample generated by MadGraph5 and showered by Pythia8

- General nTGC topology
 - $e^+e^- \rightarrow Z(\ell^+\ell^-)\gamma$, where Z decays to a pair of charged leptons
 - Two opposite sign same flavour charged leptons
 - One signal photon

Analysis Strategies

Traditional selection-based analysis relies on the clear signal signature

Strongly suppress possible background contributions

Two isolated leptons

Jet veto selection

Remove jet-related background contributions Remove higher-order corrections Guarantee that the enhancement of cross section comes from nTGC effect

Suppress Z plus final-state radiation photon scenario

Invariant mass selection

Ensure that final-state leptons decay from on-shell Z boson

Background

SM

— h₄ = -0.28

— h₄ = -0.55

- h₄ = -0.83 $-h_{4}^{T} = -1.10$ h₄ = -1.38 CEPC Simulation

 $\sqrt{s} = 240 \text{ GeV}, 20 \text{ ab}^{-1}$

 $\Delta R(I,I)$

Analysis Strategies

- Contributions from possible processes:
 - Signal: nTGC contributions
 - Background :
 - Irreducible processes (Z with an initial or final state radiation photon)
 - Other processes
 - 2-fermions, 4-fermions
 - Higgs background

 $\Lambda\Lambda\Lambda\Lambda\Lambda\Lambda$

Variables	SM Backgrounds	SM $Z\gamma$	h_4	h_3^γ	h_3^Z	Variables	Cut
$N_{\rm pho} \ge 1$	11712	1572	1629	1747	1710	$N_{ m lep}$	2 signal OSSF leptons with leading lepton $p_T^{\rm lep} > 30~{\rm GeV}$
$N_{ m lep}=2$	1152	587	624	696	675	$N_{ m pho}$	≥ 1 signal photon with $p_T^{\gamma} > 35~{ m GeV}$
$N_{ m iet}^{-1}=0$	811	587	624	696	675	$N_{ m jet}$	0
$\Delta R(\ell,\ell)\!<\!3$	698	548	585	656	634	$\Delta R(\ell,\ell)$	< 3
$ m_{\ell\ell}\!-\!m_Z \!<\!10{ m GeV}$	303	192	226	288	271	$m_{\ell\ell}$	$ m_{\ell\ell}-m_Z < 10~{ m GeV}$
$(m_{\ell\ell}\!+\!m_{\ell\ell\gamma})\!>\!182{\rm GeV}$	300	192	226	288	271	$m_{\ell\ell}+m_{\ell\ell\gamma}$	$> 182 { m GeV}$

Cut-flow table:

Cross section[fb] after applying sequential selections

Optimization

- Unlike traditional measurements, a special kinematic structure ϕ applied to reach better sensitivity
 - Defined as the angle between scattering plane and decay plane
 - Direct evidence of the interference between the SM and pure BSM effects

- Parameterization of nTGCs: $\sigma = \sigma_0(SM) + \sigma_1(SM \times nTGC) + \sigma_2(nTGC^2)$
- Similarly, we define the normalized angular distribution function respectively:

Interference term: dominated by $\cos 2\phi$ term, significantly related to s/M_Z^2

SM and Quadratic term: dominated by the constant term $\frac{1}{2\pi}$ and ϕ -dependent term which is suppressed by M_Z^2/\sqrt{s}

ϕ could be a good candidate to probe nTGCs

Optimization

- Optimization applied with net cross section for significance enhancement
 - Boudaries are set to distinguish events with positive or negative cross sections

Systematic Uncertainties

- Systematic uncertainties are categorised into two types :
 - Assigned on signal yields
 - Theoretical uncertainty : 0.5% uncertainty for modeling
 - Experimental uncertainty : luminosity, object identification, object reconstruction resolution, energy resolution, and detector acceptance
 - Assigned on background yields
 - Floating event yields to account for background modeling
 - Dominant background: varied by 5% up/down
 - Other backgrounds : varied by 100% up/down

Processes	Statistical	Theoretical	Experimental
$Z\!\gamma$ production ($e^+e^-\!\!\rightarrow\!\ell^+\ell^-\gamma$)	0.52%	0.5%	(+2.96, -3.15)%
Fixed background	Dominant backgro Other background		ound: 5% ds: 100%

Expected Limits Form Factors (h_i^V) New Physics Scales (Λ_i [TeV]) $[-2.0 \times 10^{-4}, 2.0 \times 10^{-4}]$ 1.55 h_4 Λ_{G+} $[-9.7 \times 10^{-4}, 9.7 \times 10^{-4}]$ h_3^{γ} 0.76 Λ_{G-} h_3^Z $[-1.1 \times 10^{-3}, 1.1 \times 10^{-3}]$ 0.85 $\Lambda_{\tilde{B}W}$ 1.05 $\Lambda_{\widetilde{BW}}$

• Expected exclusion constraints acchieved from ϕ variable

Danning Liu | CEPC New Physics Workshop @ Zhengzhou

- 2D constraints are also extracted by scanning pairs of nTGC operators simultaneously
 - To understand the correlation of sensitivity reaches between pairs of nTGC operators

Danning Liu | CEPC New Physics Workshop @ Zhengzhou

10

h₃^Z (× 10³)

-10

-15

-20

-25

CEPC Simulation Vs = 240 GeV, 20 ab Log(L)

Z∆

- 68% C

•••• 95% C.L

- nTGCs provide unique probe of dimension-8 SMEFT operators, and serves as a new pathway to explore new physics beyond the SM
- We present the search for nTGCs at CEPC based on CEPC_v4 geometry setup at $\sqrt{s} = 240$ GeV with an integrated luminosity of 20 ab^{-1}
- First exploration with a more realistic simulation in collaboration with the latest nTGC theoretical progress
 - With SU(2)×U(1) invariant gauge symmetry applied
- Results acceptted by FOP journal as "Cover Article"

上海交通大學

SHANGHAI JIAO TONG UNIVERSITY

Thanks for Attention

I HAILIZ INI VICCILLALI

