

Progress of TPC detector and simulation towards CEPC ref-TDR

Huirong Qi

Yue Chang, Xin She, Jinxian Zhang, Zhi Deng, Canwen Liu, Jianmeng Dong, Feng He, Jian Zhang, Lingwu Wu, Guang Zhao, Gang Li, Jinfei Wu, Chu Wang, Liwen Yu and some good inputs from LCTPC Collaboration

CEPC Day, August 29, 2024

- TPC detector for CEPC ref-TDR
- Update results of TPC simulation
- Status of the test beam with TPC module
- Summary

Updated design of TPC mechanics for ref-TDR

- Track detector system: Silicon combined with gaseous detector as the tracker and PID.
 - Pixelated readout TPC is as the baseline track detector in CEPC ref-TDR.

TPC detector	Key Parameters
Modules per endcap	248 modules /endcap
Module size	206mm $ imes$ 224mm $ imes$ 161mm
Geometry of layout	Inner: 1.2m Outer: 3.6m Length: 5.9m
Voltage of Cathode	- 62,000 V
Operation gases	T2K: Ar/CF4/iC4H10=95/3/2
Total drift time	34µs @ 2.75m
Detector modules	Pixelated Micromegas
USE S.8m Total mass 1500Kg	Easy-to-install modular design of TPC in e

Ultra-light barrel and FEA analysis

- Ultra-light material of the TPC barrel (QM55 CF)
 0.59% X₀ in total
 - Carbon Fiber barrel instead of the honeycomb barrel (~2% X₀)
 - FEA preliminary calculation: 0.2mm carbon fibber barrel can tolerant of LGAD OTK (100Kg)
 - Optimization of the connection back frame of the endcap

Material budget of TPC barrel

Layer of the barrels	D[cm]	X ₀ [cm]	d/X ₀ [%]
Copper shielding	0.001	1.45	0.07
CF outer barrel	0.020	25.28	0.08
Mirror strips	0.003	1.35	0.19
Polyimide substrate	0.005	32.65	0.02
Field strips	0.003	1.35	0.19
CF inner barrel	0.010	25.28	0.04
Sum of the r	0.59		

Ultra-light barrel and FEA analysis

• Update results of TPC simulation

Classical dE/dx measurement

- Classical dE/dx measurement by charge (charge ≈ number of primary + secondary electrons)
- Measure charge per sample along a track
- Long tail worsens the correlation of the measured average energy loss and the specific particle
 - Sensitive to large fluctuations (**Critical issue!**)
- The fundamental, **critical challenge** of all dE/dx measurements by charge summation

distribution of electrons on the track

dN/dx measurement by Cluster Counting

- Direct cluster counting \rightarrow Good method to measure dN/dx
 - Measure the number of ionization cluster of the incident particle
 - Minimized the cluster fluctuations
 - < 3% dN/dx resolution by cluster counting (statistical error only)
 - **5.4%** dE/dx resolution by charge measurement

- Critical Challenges
- How to achieve the individual clusters and count it?
 - High cluster density(~30 cl./cm in Ar mixture for m.i.p \rightarrow typical drift velocities 50 µm/ns
 - → 6 ~10 ns in between clusters → fast-shaping electronics (~ns needed) In time)
- Need R&D with high granularity or high time resolution to meet the updated PID requirements.

Full Simulation of Pixelated readout TPC in CEPC ref-TDR

- Full simulation framework of pixelated TPC developed using Garfied++ and Geant4 at IHEP
- Investigating the π/κ separation power using reconstructed clusters, a 3σ separation at 20GeV with 120cm drift length can be achieved
- dN/dx significantly **improved PID resolution**

$$Sp = \frac{|\mu_A - \mu_B|}{\frac{\sigma_A + \sigma_B}{2}}$$

Simulation of TPC detector under 3T/2T and T2K mixture gas

Optimization of the readout size of TPC in CEPC ref-TDR

- Timepix $(55\mu m \times 55\mu m)$ readout TPC prototype has been validation four times on DESY beams.
 - Power consumption: 2W/cm²; Low power mode: 1W/cm² (Too high power for pixelated readout)
- Simulation results showed that readout size can be optimized at 300µm-500µm.
 - Reasonable readout channels and power consumption need to be studied
 - Focused on 100mW/cm^2 and $500 \mu \text{m}$ readout for CEPC ref-TDR (2-phase CO₂ cooling OK!)

TPC geometry updated in CEPCSW (Ready to use)

- Updated all important components of the TPC detector geometry are done based on the **new parameters in the Ref-TDR**.
 - Including working gas, sensitive volume chamber, barrel and endcap, MPGD readout and the cathode.
 - Fast configuration and modification of the TPC geometry through **xml configuration files**.
- Integrated in CEPCSW software framework (MR40)

• Status of the test beam with TPC detector

Status of the prototype of pixelated TPC for TDR

- **R&D on Pixelated TPC readout for CEPC TDR**
 - Macro-Pixel TPC ASIC chip was started to developed and 2nd prototype wafer has done and tested
 - The **TOA and TOT** can be selected as the initiation function in the ASIC chip
 - $500\mu m \times 500\mu m$ pixel readout designed
 - Noise of FEE: 100e
 - Time resolution: **14bit** (5ns bin)
 - Power consumption: <1mW/pixel (2nd prototype)
 - ~100mW/cm²
 - Technology: 180nm CMOS -> 60nm CMOS
 - High metal coverage: 4-side bootable
- Prototyping pixelated TPC detector using the chips
 - Principle of the prototype is no problem for testing
 - The validation of the prototype preparation ongoing

2.2mm

Photo and layout of ASIC Chip R&D for TPC

Prototyping pixelated TPC detector using the chips

Some critical simulation and validation

• Pixelated readout TPC can be as a realistic and promised track detector in CEPC TDR, some key issues will be simulated and validated.

Beam

Readout

- Occupancy and hit density
- Improved dE/dx+dN/dx
- Ion backflow suppression
- Reasonable channels and power consumption
- Running at 2 Tesla
- Beamstrahlung and distortion
- LCTPC (Lepton Collider Time Projection Chamber) collaboration will continue to push this technology to e+e- collider.

Detector module layout

TEST MEAM

DESY.

DESY 2 Test Beam Coordinators: Ralf Diener, Norbert Meyners, Marcel Stanitzki

DESY beam plan

- Some time slots available for the test beam
- Test bam hall for TPC surrounded 1.0T
 - TB241
 - **Contacted with Ralf** in charge of this hall

			_		_				
Startdate	Week.	TB21	т	TB22	т	TB241	т	TB24	т
01.01.2024	1	Shutdown		Shutdown		Shutdown		Shutdown	
08.01.2024	2	Shutdown		Shutdown		Shutdown		Shutdown	
15.01.2024	3	Shutdown		Shutdown		Shutdown		Shutdown	
22.01.2024	4	Shutdown		Shutdown		Shutdown		Shutdown	
29.01.2024	5	Startup		Startup		Startup		Startup	
05.02.2024	6	CMS Outer Tracker	х	dSiPM	х			CMS-HGCAL	Х
12.02.2024	7	CMS Outer Tracker	х	Mu3e	х			AidaInnova–WP6	Х
19.02.2024	8	CMS ETL ETROC	х	Mu3e	х			AidaInnova–WP6	х
26.02.2024	9	CMS ETL ETROC	х	TelePix	х			ATLAS HGTD	
04.03.2024	10	ITk Pixel Dortmund	х	ATLAS-ITk-Strips	х			ATLAS HGTD	
11.03.2024	11	CMS Inner Tracker	х	LHCb-MightyPix	х			CMS ETL	х
18.03.2024	12	CMS Inner Tracker	х	LHCb-MightyPix	х			SHIP-SHADOWS-ECAL	х
25.03.2024	13	Maintenance		Maintenance		Maintenance		Maintenance	
01.04.2024	14	Maintenance		Maintenance		Maintenance		Maintenance	
08.04.2024	15	DESY Heidelberg TB School	х	Tangerine	х			DESY Heidelberg TB School	
15.04.2024	16	Schwartz-Reisman School		Tangerine	х			ALICE-ITS3	
22.04.2024	17	MDI-2		RD50-MPW4	х			CalVision	х
29.04.2024	18	CMS ETL ETROC	х	CMOS Strips Detectors	х			Telescope-Dev	х
06.05.2024	19	CMS ETL ETROC	х	HD HV-MAPS	х			IPHC-CE65_v2	
13.05.2024	20	Maintenance		Maintenance		Maintenance		Maintenance	
20.05.2024	21	MDI-2		dSiPM	х			CMS HGCAL	
27.05.2024	22	ATORCH		Tangerine	х			CMS HGCAL	
03.06.2024	23	CMS ETL ETROC	х	Tangerine	х				
10.06.2024	24	CMS ETL ETROC	х						
17.06.2024	25	CMS ETL ETROC	х	DCRSD	х				
24.06.2024	26	CMS Inner Tracker	х	ATLAS-ITk-Strips	х				
01.07.2024	27	Maintenance		Maintenance		Maintenance		Maintenance	
08.07.2024	28	MONOPIX2	х	Telescope-Dev	х				
15.07.2024	29	Belle-II CMOS	х	CMS-HGCAL	х			MIMOSIS	
22.07.2024	30			TelePix	х				
29.07.2024	31	BL4S preparation		TelePix	х				
05.08.2024	32	Shutdown		Shutdown		Shutdown		Shutdown	
12.08.2024	33	Shutdown		Shutdown		Shutdown		Shutdown	
19.08.2024	34	Shutdown		Shutdown		Shutdown	Γ	Shutdown	
26.08.2024	35			Telescope-Dev			┮	CMS HGCAL	Х
02.09.2024	36						_		
09.09.2024	37	BL4S	х						
16.09.2024	38	BL4S	х						
23.09.2024	39	BL4S	х	Tangerine	х			UHH-LGAD	Х
30.09.2024	40			RD50–MPW4					
07.10.2024	41	Maintenance		Maintenance		Maintenance		Maintenance	
14.10.2024	42	ATORCH		ATLAS-ITk-Strips	х			DDR6-CALICE SIW-ECAL	Х
21.10.2024	43			Tangerine	х			CalVision	
28.10.2024	44	MONOPIX2	х	Tangerine	х			EEEMCAL	
04.11.2024	45	MONOPIX2	х	UHH-LGAD	х			EEEMCAL	
11.11.2024	46	Maintenance		Maintenance		Maintenance		Maintenance	
18.11.2024	47	CMS HGCAL	х	ATLAS HGTD	х			LHCb-ECAL	
25.11.2024	48	CMS Inner Tracker	х	ATLAS HGTD	х			LHCb-ECAL	
02.12.2024	49	CMS Inner Tracker	х	ATLAS-ITk-Strips	х			CMS ETL ETROC	х
09.12.2024	50	LHCb-MightyPix	х	DCRSD	х			CMS ETL ETROC	х
16.12.2024	51	LHCb-MightyPix	х	Telescope-Dev	х			EXFLU 1	
23.12.2024	52	Shutdown		Shutdown		Shutdown		Shutdown	

Assembled module of the beam test

- Two Aluminum backframes have been done.
 - One assembled module delivered to Tsinghua.
 - O ring has been selected using 2.3mm

Magnetic field validation

- The materials of the cables and connects have been studied surround the magnetic field of 1.2T.
 - The uniformity magnetic field **too smaller not to fit to study** TPC module.
 - All cables and connects confirmed to meet 1.2T (Thanks to Feipeng's warm helpings)

Updated results of the TPC module testing

- Completed testing of TEPIX, a pixel-based readout chip to **determine that the chip is operational**.
 - Inputted square wave signals, external trigger mode
 - Chip outputs data functional and the data taking per channel
 - This steps are working well, and the detector will be assembled in next weeks.

Amplitude distribution per channel(left) and Uniformity per channel (right)

Firmware and data structure of DAQ

- Firmware construction block diagrams and data structures are defined.
 - All functional modules are under development.
- It's going well but still needs some time to debug.

• TPC detector prototype R&D using the pad readout towards the pixelated readout for the future e+e- colliders, espial to the high luminosity Z pole run at future e+e- collider.

• Pixelated TPC is choose as the baseline detector as main track in CEPC ref-TDR. The simulation framework has been developed using Garfied++ and Geant4 at IHEP, and all new updated parameters have been integrated in CEPCSW software.

• Some validation of TPC module and prototype for the test beam in DESY have been studies and developed in last several months.

Thanks for all !

GIVE SPACE MORE

Thursday, D. Price Yue Chang, Nuc She, Ann Zhang, Dania Was, Touchon Wang, Yue Chang, Nuc She, Ann Zhang, Dania Was, Xp(d=1, 2021)

