The Super Tau-Charm Facility in China

Guangshun Huang(黄光顺) (On behalf of STCF working group) University of Science and Technology of China (USTC)

第六届粒子物理天问论坛, 2024.11.8-12, 洛阳

Super Tau-Charm Facility (STCF)

• Site: Suburban "Future Big Science City" in Hefei

2-7 GeV: Unique Features, Broad Physics Spectrum

- Transition region between perturbative and non-perturbative QCD
- Rich resonant structures, large production cross-sections for charmonium states
- Pair production of hadrons and tau leptons at threshold
- Copious production of exotic hadrons (multi-quark, gluonic and hybrid states)

3

Physics Program at STCF

- STCF conceptual design report: Physics & detector, Front. Phys. 19, 14701 (2024)
 - ✓ Leading role
 - ✓ In synergy with Belle II/LHCb/Eic/EicC

A Super Factory of Various Particles

- Not only a τ-charm factory, but also a factory of XYZ, hyperons and light hadrons
 - ✓ Rich QCD and Hadron Physics
 - ✓ Flavor Physics and CPV
 - ✓ New Physics Beyond SM?

Hadron spectroscopy and exotic hadrons

1 ab⁻¹/year at STCF ● 1B Y(4230) ● 100M Z_c(3900)

• 5M X(3872)

- Hadron spectroscopy is a crucial way to explore QCD and its properties
- QCD allows combinations of multi-quarks and gluons
- Spectrum above open charm is much overpopulated
- \rightarrow exotic states?
- STCF has unique advantages for searching exotic hadrons (fine scan, large effective luminosity, efficiency)

Charmonium(-like) states: so-called XYZ

The overpopulated charmonium spectrum is a unique territory to study exotic hadrons.

The XYZ puzzles:

- Masses away from quark model predictions, *e.g.* X(3872), Y(4230) and Y(4260)
- Many seen in final states of charmonium, instead of open-cham channels (Not all)
- Charged structures like Z_{c(s)} must contain at least four quarks. Their connections to Y and X are of interest
- An overall classification is still lacking STCF advantage and opportunities :
- Large data sample
- High efficiency and precision.
- Unique fine scan of exotic hadron states

1			1 1	×
XYZ	Y(4260)	$Z_c(3900)$	$Z_c(4020)$	X(3872)
No. of events	10 ¹⁰	10 ⁹	10 ⁹	5×10^{6}

The Penta-quark and Doubly Charmonium

Sci.Bull. 65 (2020) 1983

- P_c pentaquarks are good hadronic molecule candidates
- More pentaquark states? Cross-section line shape?...
- $e^+e^- \rightarrow J/\psi h \overline{h}$ are possible processes for studying hidden-charm pentaquarks $(J/\psi p \overline{p} \text{ event level}^{\sim} 10^3)$
- More likely decay to open-charm final states:

 $e^+e^-
ightarrow \Lambda_c \overline{D}^* \overline{p}$, $\Sigma_c^* \overline{D}^{(*)} \overline{p}$

• $e^+e^- \rightarrow J/\psi c \overline{c}$ has a production cross-section on the order of tens of fb

STCF advantage and opportunities :

- CM Energy region above 6 GeV is ideal for fully charmed multi-quark states
- Low background and high efficiency

Glueball from *J***/\psi radiative decays**?

Hadron Production and hadron Structure

• Advantage @ STCF: Transition region between non-perturbative QCD and pQCD

Nucleon structure: electromagnetic form factor

 $\bullet \; e^+e^- \to B \overline{B}$ @one-photon exchange approximation

$$\checkmark \quad \frac{d\sigma}{d\cos\theta_B} = \frac{\pi \alpha^2 \beta C}{2s} [|G_M|^2 (1 + \cos^2\theta_B) + \frac{1}{\tau} |G_E|^2 \sin^2\theta_B]$$

$$\checkmark \quad \text{velocity } \beta = (1 - 4m_B^2/s)^{0.5}$$

Modified scaling expression in **nonperturbative** region: $\frac{q^2 F_2}{F_1} \propto$ $\ln(\frac{q^2}{A^2})$, with $\Lambda \approx 0.3$ GeV

- Various theory models for TL form factors
- Dispersion theoretical analysis: joint interpretation of SL and TL

Prospect of TL form factor at STCF

- Remaining questions of TL electromagnetic form factors
 - ✓ **Step-like behavior** of production cross section, indication of near-threshold singularity
 - ✓ **Damped oscillation distribution** after subtracting modified dipole in **effective FF**
 - \checkmark Damped oscillation distribution of $|G_E/G_M|$ ratio
 - ✓ Evolution of the phase between G_E and G_M .
 - ✓ The asymptotic behavior of TL-EMFFs

Fragmentation functions (FFs) for EIC & EicC

- Strange quark density function: $\Delta s(x) + \Delta \overline{s}(x)$
 - ✓ Inclusive DIS: only proton PDF
 - a. negative for all values of **x**
 - ✓ Semi-inclusive DIS: proton PDF & kaon FF
 - a. DSS FFs: positive for most of measured x
 - b. HKNS FF & JAM FF: negative
- SIA @ e⁺e⁻: the cleanest input for FFs fitting

Precise knowledge of FFs will be crucial

FFs with quark/hadron polarization

м

•••

Hadron	Quark polarizatiom @ PPNP 91 136 (2016)								
	Unpolarized	Longitudinally	Transversely						
Unpolarized	D ^h ₁		$\mathrm{H}_1^{\perp \mathrm{h}}$						
Longitudinally		${f G}_1^h$	${f H}_{1L}^{\perp h}$						
Transversely	$\mathbf{D_{1T}^{\perp h}}$	$\mathbf{G_{1T}^h}$	$\mathbf{H_1^h} \ \mathbf{H_{1T}^{\perp h}}$						

D. Field, R.P. Feynman, Phys.Rev.D 15, 2590 1977 7. Owens, E. Reya. M. Gluck, Phys.Rev.D 18, 1501 1978 Baier, J. Engels and B. Petersson, Z.Phys.C 2, 265 1979 Anselmino, P. Kroll E. leader, Z.Phys.C 18,307 1983	"model estimates consistent v	vith data" LO groundbreaking	$ \begin{array}{c} 12 \\ 9 \\ 6 \\ 3 \end{array} $
Chiappetta et al., Nucl.Phys.B 412, 3 1994 Binneweis. B. Kniehl, G. Kramer, Z.Phys.C 65, 471 1995 Binneweis. B. Kniehl, G. Kramer, Phys.Rev.D 52, 4947 1995 Binneweis. B. Kniehl, G. Kramer, Phys.Rev.D 53, 3573 1996 de Florian. M. Stratmann, W. Yogelsang, Phys.Rev.D 57, 5811 1998 Bourhis et al. Eur.Phys.J.C 19, 89 2001 Kniehl G. Kramer, B. Potter, Nucl.Phys.B 582, 514 2000 Kretzer, Phys.Rev.D 62, 054001 2000 Albino, B. Kniehl, G. Kramer, Nucl.Phys.B 725 2005 I. Hirai et al., Phys.Rev.D 75, 094009 2007 . heavy flavors, hadron mass effects, resummations,	$ \begin{array}{c} \pi^{0} \\ \pi^{\pm}, K^{\pm} \\ LEP \\ K^{0} \\ \Lambda \\ h^{\pm} \\ \pi^{\pm}, K^{\pm}, p/\bar{p} \\ \end{array} $ Flavor tagging OPAL tagging uncertainties	CGGRW94 BKK95 DSV97 BFGW00 KKP00 KKP00 KKE00 AKK95 HKN807 MLO C ⁴ C ⁶ paradapa	0 2 7 Ratio to N 1 1 1 Ratio to N 1 1 1 1 1 1 1 1 1 1 1 1 1
de Florian, R.S., M. Stratmann, Phys.Rev.D 75, 114010 2007 Albino, B. Knichl, G. Kramer, Nucl.Phys.B 803, 42 2008 S., M. Stratmann, P. Zurita, Phys.Rev.D 81, 054001 2010 Aidala, et al. Phys.Rev.D 83, 034002 2011 Leader, A.V. Sidorov, D. Stamenov, arXiv:1312.5200 Soleymaninia et al., Phys.Rev.D 91, 4035 2015, D 95 094019 2017 Leader, A.V. Sidorov, D. Stamenov, Phys.Rev.D 94, 096001 2016 Bertone, et al., EPIC 77,516 2017 Sato, et al., Phys.Rev.D 101, 074020 2020 A. Khalek, et al., Phys.Lett.B 834, 137456 2022	$e^+e^-, pp, SIDIS$ e^+e^-, pp nFFs η SIDIS only $e^+e^-, pSIDIS$ π^+, K^+ update SIDIS only h^\pm, e^+e^- only $e^+e^-, SIDIS$ $e^+e^-, SIDIS$	DSS07 AKK08 SSZ10 AESS11 LSS13 SKMNA13 DSS14/17 LSS15 NNFF1.0 JAM19 MAPFF1.0 Global paradigm	2 0 1 2 1 2 1 2 1 2 1 2 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 1 2 1 1 1 1 2 1

$e^+e^- \rightarrow \pi^0/K_S^0/\eta + X @ BESIII$

- Inclusive π^0 production: surprise
- Inclusive K⁰_S production: not so bad
- Inclusive η: good fit achieved, detail arXiv:2404.11527
 - $\sqrt{s} > 10 \text{GeV e}^+\text{e}^- \text{data} + \text{BESIII data}$
 - ✓ NNLO accuracy, hadron mass correction & higher twist contributions

Collins Fragmentation Function

pT

P1 (h1

$$D_{hq^{\uparrow}}(z, P_{h\perp}) = D_1^q(z, P_{h\perp}^2) + H_1^{\perp q}(z, P_{h\perp}^2) \frac{(\hat{\mathbf{k}} \times \mathbf{P}_{h\perp}) \cdot \mathbf{S}_q}{zM_h}$$

- Normalized ratio R = N(2φ₀)/<N₀>
 ✓ N(2φ₀): di-pion yield in each 2φ₀ bin
 ✓ <N₀>: averaged bin content
 ✓ R^U: unlike sign (π[±]π[∓]);
 ✓ R^L: like sign (π[±]π[±])
 ✓ R^C: all pion pair
- Double ratio: reduce acceptance and radiation effect

 $\frac{R^U}{R^{L(C)}} = 1 + \cos(2\phi_0) \cdot \frac{\sin^2 \theta_2}{1 + \cos^2 \theta_2} \frac{\mathcal{F}(H_1^{\perp}(z_1)\bar{H}_1^{\perp}(z_2)/M_1M_2)}{D_1(z_1)\bar{D}_1(z_2)} = 1 + \cos(2\phi_0) \cdot A^{UL(UC)}$

Fit
function $\frac{R^{U}}{R^{L(C)}} = A\cos(2\phi_0) + B$ $A^{UL/UC}$ mainly contains Collins effect
B should be consistent with unity16

Collins Fragmentation Function

- The statistical uncertainty on asymmetry A^{UL} with 1ab⁻¹ @ 7 GeV
 - ✓ (1.4, 4.2)×10⁻⁴ for $e^+e^- → \pi \pi + X$
 - $\checkmark (3.5, \ 20) \times 10^{-3} \text{ for } e^+e^- \rightarrow K \ K + X$
- Key process for PID of STCF

CP Violation

- CPV observed in K, B and D mesons, but all consistent with CKM theory in SM;
- Baryon asymmetry of the universe indicates the existence of non-SM CPV sources;
- STCF is capable of searching for CPV in hyperons and τ lepton, as well as CPT violation in Kaon with high sensitivity.

Unique advantages :

Quantum correlation, huge statistics, clean background

CPV in hyperon decay

- BESIII has observed the polarization of hyperon in the J/ ψ decay, and carried out CPV measurement by performing the jointly angle distribution analysis.
- The sensitivity to test CPV in the J/ ψ decay is found to be much improved due to the quantum correlation between hyperon pair, and the polarization of hyperon. CP test $A_{CP} = \frac{\alpha_- + \alpha_+}{\alpha_- - \alpha_+}$

PRL 129, 131801 (2022)

CPV at STCF

 Large statistical data samples from STCF offer the great opportunity to study CP violation in the Hyperon, Tau lepton, Charmed meson and Kaon
 Polarized beam is expected to improve the prob sensitivity

Hyperon CPV at STCF

The transversely polarized Λ in J/ ψ decay offers an unique platform to study the nature of pQCD and test the EW model

 $10^{12} \text{ J/\psi} \rightarrow \text{hyperon factory} (10^9)$

Decay mode	$\mathcal{B}(\text{units } 10^{-4})$	Angular distribution parameter α_{ψ}	Detection efficiency	No. events expected at STCF	
$J/\psi \to \Lambda \bar{\Lambda}$	$19.43 \pm 0.03 \pm 0.33$	0.469 ± 0.026	40%	1100×10^{6}	
$\psi(2S) \rightarrow \Lambda \bar{\Lambda}$	$3.97 \pm 0.02 \pm 0.12$	0.824 ± 0.074	40%	130×10^{6}	
$J/\psi \to \Xi^0 \bar{\Xi}^0$	11.65 ± 0.04	0.66 ± 0.03	14%	230×10^{6}	
$\psi(2S) \to \Xi^0 \bar{\Xi}^0$	2.73 ± 0.03	0.65 ± 0.09	14%	32×10^{6}	
$J/\psi \to \Xi^- \bar{\Xi}^+$	10.40 ± 0.06	0.58 ± 0.04	19%	270×10^{6}	
$\psi(2S) \rightarrow \Xi^- \bar{\Xi}^+$	2.78 ± 0.05	0.91 ± 0.13	19%	42×10^{6}	

- With one year data, STCF can reach CPV sensitivity of Λ to 1.2×10⁻⁴, same level as SM prediction (10⁻⁴~10⁻⁵).
- Optimizing the reconstruction efficiency of low-momentum pion can greatly improve sensitivity.
- Using polarized beams, or "monochromatic" collision modes, can improve sensitivity to 10⁻⁵.
- Systematic uncertainty is a challenge.

Searching for hyperon EDM

µ: magnetic dipole momentd: electric dipole moment

Non-zero EDM \Rightarrow violate P & T symmetry, T violation \Leftrightarrow CP violation, if CPT holds

• Detailed dynamics in
$$J/\psi$$
 decay to hyperon pair
 $\mathcal{A} = \epsilon_{\mu}(\lambda)\overline{u}(\lambda_{1})\left(F_{V}\gamma^{\mu} + \frac{i}{2M_{\Lambda}}\sigma^{\mu\nu}q_{\nu}H_{\sigma} + \gamma^{\mu}\gamma^{5}F_{A} + \sigma^{\mu\nu}\gamma^{5}q_{\nu}H_{T}\right)\nu(\lambda_{2})$
Systematic measurement of EDMs of hyperon family

(a)Sensitivity of $Re(d_B)$ and $Im(d_B)$

X. G. He, J. P. Ma PLB 839, 137834

SM: ~ $10^{-26} e \text{ cm}$ BESIII: milestone for hyperon EDM measurement $\Lambda 10^{-19}e \text{ cm}$ (FermiLab $10^{-16} e \text{ cm}$) first achievement for Σ^+, Ξ^-

and Ξ^0 at level of 10^{-19} e cm

a litmus test for new physics

STCF: improved by 2 order of magnitude

Precise measurement of CKM elements

• CKM elements are the fundamental SM parameters that describe the mixing of quark fields due to weak interaction. Charmed meson leptonic decays are the best way to measure $|V_{cd}|$ and $|V_{cs}|$

-			
	BESIII	STCF	Belle II
Luminosity	2.93 fb ⁻¹ at 3.773 GeV	1 ab ⁻¹ at 3.773 GeV	50 ab^{-1} at $\Upsilon(nS)$
$\mathcal{B}(D^+ \to \mu^+ \nu_\mu)$	5.1% _{stat} 1.6% _{syst} [8]	0.28%stat	
f_{D^+} (MeV)	2.6%stat 0.9%syst [8]	$0.15\%_{stat}$	Theory : 0.2%
$ V_{cd} $	2.6% _{stat} 1.0% [*] _{syst} [8]	$0.15\%_{stat}$	$\overline{(0,10)}$
$\mathcal{B}(D^+ \to \tau^+ \nu_{\tau})$	20%stat 10%syst [9]	$0.41\%_{stat}$	U.1% expected
$\mathcal{B}(D^+ \to \tau^+ \nu_\tau)$	21% tot 13% mut [9]	0.50%	_
$\mathcal{B}(D^+ \to \mu^+ \nu_\mu)$		0.00 /0 stat	
Luminosity	3.2 fb ⁻¹ at 4.178 GeV	1 ab ⁻¹ at 4.009 GeV	50 ab^{-1} at $\Upsilon(nS)$
$\mathcal{B}(D_s^+ \to \mu^+ \nu_\mu)$	2.8%stat 2.7%syst [10]	0.30%stat	
$f_{D_s^+}$ (MeV)	1.5%stat 1.6%syst [10]	$0.15\%_{\mathrm{stat}}$	111001 9 . 0.270
$ V_{cs} $	1.5%stat 1.6%syst [10]	$0.15\%_{stat}$	(0.1% expected)
$f_{D_{s}^{+}}/f_{D^{+}}$	3.0%stat 1.5%syst [10]	$0.21\%_{stat}$	
$\mathcal{B}(D_s^+ \to \tau^+ \nu_{\tau})$	$1.9\%_{\mathrm{stat}} 2.3\%_{\mathrm{syst}}^{\dagger}$	0.24%stat	0.6%stat 2.7%syst
$f_{D_{s}^{+}}$ (MeV)	$0.9\%_{\text{stat}} 1.2\%_{\text{syst}}^{\dagger}$	0.11% _{stat}	
$ V_{cs} $	$0.9\%_{\rm stat} 1.2\%_{\rm syst}^{\dagger}$	$0.11\%_{stat}$	<u> </u>
$\overline{f}_{D_s^+}^{\mu\&\tau}$ (MeV)	$0.9\%_{\mathrm{stat}} 1.0\%_{\mathrm{syst}}^{\dagger}$	0.09%stat	0.3% ta 10% 1% expected
$ \overline{V}_{cs}^{\mu\& au} $	$0.9\%_{stat}$ $1.0\%_{syst}^{\dagger}$	$0.09\%_{stat}$	-
$\frac{\mathcal{B}(D_s^+ \to \tau^+ \nu_{\tau})}{\mathcal{B}(D_s^+ \to \mu^+ \nu_{\mu})}$	$3.6\%_{stat} 3.0\%_{syst}^{\dagger}$	0.38% _{stat}	0.9% _{stat} 3.2% _{syst}

Sensitivity of precision measurements

- The precision frontier for testing of SM parameters
- Uncertainties from reducible (selection-based), and irreducible sources (theoretical input, instrument effect)
- About one order of magnitude improvement in sensitivities

Sensitivity of rare or forbidden decays

- Sensitivity of various rare/forbidden decays measurements at STCF are compared with various BSM models
- The precision at STCF can be used to distinguish between various BSM models

Challenges of STCF Accelerator

- Ultra-high luminosity in tau charm energy region (2-7 GeV), high-quality beam, stable operation
- Extremely small bunch size, high current intensity, strong nonlinearity and collective effect

STCF accelerator pre-conceptual design

Working on a design with a larger collider ring (800-1000 m)

Parameters	Units	STCF
Optimal beam energy, <i>E</i>	GeV	2
Circumference, C	m	616.76
Crossing angle, 2 θ	mrad	60
Revolution period, T_0	μs	2.057
Horizontal emittance, ϵ_x	nm	5.77
Vertical emittance, ε _y	pm	28.85
Beta function at IP, β_x/β_y	mm	40/0.6
Beam size at IP, σ _x /σ _y	μm	15.19 /0.132
Betatron tune, v_x/v_y		31.552/24.572
Momentum compaction factor, α_p	10^{-4}	<mark>9</mark> .71
Energy spread, σ_{ϵ}	10 ⁻⁴	8.26
Beam current, I	А	2
Number of bunches, n _b		512
Single-bunch charge	nC	8.04
Energy loss per turn, U ₀	keV	286
SR power per beam, P _{SR}	MW	0.572
Transvers damping time, $\tau_{x/y}$	ms	28.59
RF frequency, f _{RF}	MHz	499.7
RF voltage, V _{RF}	MV	1.2
Bunch length, σ_z	mm	8.2
Piwinski angle, φ _{Piw}	rad	16.19
Ver. beam-beam parameter, ξ_y		0.107
Luminosity, L	cm ⁻² s ⁻¹	1.37E+35

STCF Accelerator R&D

Positron Source Design

Bunch-by-Bunch 3D position measurement

Detector requirements from physics

• Highly efficient and precise reconstruction of exclusive final states produced in 2-7 GeV e⁺e⁻ collisions

Optimized

- ✓ Precise measurement of low-p particles (< 1 GeV/c)
- \rightarrow low mass
- ✓ Excellent PID : π/K and μ/π separation up to 2 GeV

Process	Physics Interest	1	Requirements					
		Subdetector						
$ au o K_s \pi u_{ au},$	CPV in the τ sector,		acceptance: 93% of 4π ; trk. effi.:					
$J/\psi ightarrow \Lambda ar{\Lambda},$	CPV in the hyperon sector,	ITK+MDC	$> 99\%$ at $p_T > 0.3$ GeV/c; $> 90\%$ at $p_T = 0.1$ GeV/c					
$D_{(s)}$ tag	Charm physics		σ_p/p = 0.5%, $\sigma_{\gamma\phi}$ = 130 μ m at 1 GeV/c					
$e^+e^- \rightarrow KK + X,$	Fragmentation function,	DID	π/K and K/π misidentification rate < 2%					
$D_{(s)}$ decays	CKM matrix, LQCD etc.	PID	PID efficiency of hadrons > 97% at $p < 2$ Ge					
$ au ightarrow \mu \mu \mu, au ightarrow \gamma \mu,$	cLFV decay of τ ,		μ/π suppression power over 30 at $p < 2$ GeV/c,					
$D_s o \mu \nu$	CKM matrix, LQCD etc.	PID+MUD	μ efficiency over 95% at $p = 1$ GeV/c					
$ au o \gamma \mu$,	cLFV decay of τ ,	EMC	$\sigma_E/E \approx 2.5\%$ at $E = 1 \text{ GeV}$					
$\psi(3686)\to\gamma\eta(2S)$	Charmonium transition	ENIC	$\sigma_{\rm pos} \approx 5 \text{ mm}$ at $E = 1 \text{ GeV}$					
$e^+e^- \rightarrow n\bar{n},$	Nucleon structure		$\sigma_{T} = \frac{300}{100}$ ps					
$D_0 \rightarrow K_L \pi^+ \pi^-$	Unity of CKM triangle	EMIC+MUD	$\nabla I = \sqrt{p^3 (\text{GeV}^3)} p^3$					
$D_0 \rightarrow \kappa_L \pi \pi$			1 1 1 1					

STCF detector conceptual design

STCF detector R&D: detector prototypes

Offline software

• Developed based on light-weight and flexible **SNiPER** framework and adopted some state-of-the-art technologies

- ✓ Podio for Event Data Model
- ✓ **DD4hep** for detector description
- ✓ **TBB** for multi-threading
- ✓ **ONNX** for machine learning
- Full simulation under OSCAR is undergoing

STCF Project Development

Kick-Off Meeting and R&D Project Review Meeting

<complex-block>

 Image: State Sta

Kick-off Meeting, Aug. 2023, USTC More than 30 academicians of CAS, as well as government officials of Anhui province and Hefei city, along with representatives from various domestic research institutions, totaling 170 attendees. **R&D Project Review, Dec. 2023, USTC** Organized by Development and Reform Commissions of Anhui province and Hefei city. The R&D project was approved for a **budget of ~400M CNY** and is jointly funded by Anhui, Hefei and USTC.

Site selection – future big science city

Six big facilities for science and technologies (17155 acres)
 Ecological green space and modern agricultural (11815 acres)
 HALF (4th generation light source) was approved by
 central government, and just began construction
 STCF site is preliminarily decided by local government in
 Apr. 2023, geological exploration and engineering design is
 ongoing

Project Schedule in the ideal scenario

	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032-2047
Conceptual design CDR															
Key Technology R&D TDR															
Construction															
Operation															15 years

Summary

- STCF covers a unique transition region between perturbative and non-perturbative QCD, providing precision measurements aimed at answering key questions in QCD and search for new physics BSM.
- STCF will utilize and challenge key technologies accelerator, particle detection and data processing, computing and networking.
- Anhui province and USTC have committed support, aiming for applying construction approval during the 15th five-year plan (2026-2030).
- International collaboration is crucial, with ongoing efforts to expand collaborations both domestically and internationally, so:

Welcome to join!