

锦屏中微子实验研究进展

李进京

邮箱: jinjing-li@mail.tsinghua.edu.cn 法化十受工程物理系

清华大学工程物理系

代表锦屏中微子合作组

2024年11月9日于洛阳, 第六届粒子物理天问论坛

•简介

- 中国锦屏地下实验室
- 锦屏中微子实验
- 一吨原型机
- •五百吨探测器
- 总结

具有国际实验室中最低的宇宙线本底和反应堆本底

具有国际实验室中最低的宇宙线本底和反应堆本底

中国锦屏地下实验室 CJPL

锦屏D2厅基坑岩石样本

周围岩石以大理岩为主

· 主要岩石放射性核素含量低于北京地表 正常环境的约几十分之一到几百分之一

• 锦屏中微子一吨原型机自2017年开始在CJPL-I运行采数

- 中心亚克力球装载1吨慢液闪
- •测试硬件
 - 包括电子学和PMT等等
- •测试慢液闪性能
- 实地测量本底

• ...

- 中心亚克力球装载1吨慢液闪
- •测试硬件
 - 包括电子学和PMT等等
- 测试慢液闪性能
- 实地测量本底

• • • •

- •太阳中微子观测站
 - •能量和方向同时测量,极低宇生本底
 - 真空-物质振荡过渡
 - CNO中微子精确测量, 高低金属丰度...

- 地球中微子
 - 临近青藏高原, 提供地质迁移研究窗口
 - 流强测量, U/Th比, 放射性产热贡献

• 超新星中微子

一吨原型机研究进展

一吨原型机: 放射性本底

详见

• NIM-A 1054 (2023) 168400

- 在无外源情况下利用暗噪声和天然放射性完成PMT刻度,和事例重建
- 利用²¹⁴Bi-²¹⁴Po的 β - α 级联衰变监测氡气泄漏,安装氮气系统
- •利用 β - α , γ 等信号测量PMT和液闪的放射性污染水平
 - PMT: ${}^{232}\text{Th} \rightarrow (1.12 \pm 0.32) \times 10^{-6} \text{ g/g}; {}^{40}\text{K} \rightarrow (4.67 \pm 1.35) \times 10^{-8} \text{ g/g}$
 - 液闪: ²³⁸U→(1.28±0.16)x10⁻¹²g/g; ²³²Th→(2.49±0.50)x10⁻¹³g/g

详见 arXiv:2409.04169

一吨原型机: 宇宙线缪子及其本底

- 使用1178天数据对缪子通量和缪致中子产额展开详细研究
- 缪子通量: (3.56±0.16_{stat}±0.10_{syst})x10⁻¹⁰ cm⁻² s⁻¹
 - ~ 0.4个缪子每天
- 提供国际上在液闪中缪子平均能量 (~360 GeV) 最高的缪致中子产额点: (3.37±1.41±0.31)x10⁻⁴ μ⁻¹g⁻¹cm²,
 - 针对小型探测器,提出尺寸修正因子,并分析了不同次级粒子的贡献

- 主要升级: 30支滨松PMT被替换为60支新型MCP-PMT
- 作为百吨探测器的先行测试平台
- 目前以水作为探测器介质运行测试中...

五百吨探测器规划

五百吨探测器概念图

- · 9.96 m 球形亚克力容器, 500 立方米
 - · 可更换靶介质,水,液闪,掺杂
- 绳索支撑亚克力球
 - · 与水相比的密度变化: ±20% (重力或者浮力)
 - 低本底材料,高强度,低蠕变
- 不绣钢架和亚克力球的力学分析已经完成

详情参见: NIM-A 830 (2016) Astroparticle Physics 109 (2019) 33-40

- 角度分辨和能量分辨
 - ・ 角度: 切伦科夫光, 具有方向性,
 - ・ 能量: 闪烁光为主, 各向同性,
- ・ 减少闪烁光干扰 → 重建方向
 - · 调整闪烁光发光时间(油基液闪)

瞬发,

发光慢,

产额低

产额高

LiCl方案

- ・LiCl水溶液 + C-124作为探测介质
- 对中微子: $\nu_e + {}^7\text{Li} \rightarrow {}^7\text{Be} + e^-(+\gamma)$
 - ・对低能太阳中微子具有较高截面
 - ・对太阳⁸B中微子总截面是v-e弹性散射的约60倍
- ・ 对反中微子:反贝塔衰变
 - ・³⁵Cl高中子俘获截面 (43 barn)
 - ・释放高能量gamma: ~8.6 MeV
- ・高天然丰度
 - ⁷Li: 92%, ³⁵Cl: 76%
- ・高溶解度: 100 g 水可溶80 g LiCl

Absorbance

MCP-PMT和电子学

- ➤ ~4,000 支新型 8-inch MCP-PMT
 - > U/Th: <4x10⁻⁸ g/g, K-40: <4x10⁻⁹ g/g
 - ▶ 高量子效率:~30%
 - > 镀膜: 提升探测效率和MCP寿命
 - ➤ TTS: <1.8 ns</p>
- ≻ 600 支MCP-PMT已经生产完成

参见: NIM-A 1055 (2023) 168506

- ▶ 清华自研PMT波形数字化板
 - > 14 bit, 1 GSps, 800 mW/ch
 - > 数据传输带宽与之前CAEN相比
 - ≻ 提升3个量级到128 Gbps
 - ▶ 触发率上限随之提升到~193.5 k
- ≻ 在一吨原型机中测试
 - ➢ 与CEAN读出对比
 - > 未来可能测试5 GSps/12 bit电子学

- 利用慢液闪重建切伦科夫光和闪烁光 ullet
- 逐事例的方向、能量和位置重建 ullet
- 切伦科夫光发光能力: •
 - $\mathbf{e} > \gamma > \mathbf{p} \approx \alpha,$ 粒子鉴别
 - JINST18 (2023) 02, P02004 •

250

200

锦屏中微子实验研究进展 李讲京 (清华大学)

Electron

- CJPL-II的五百吨太阳中微子观测站预计在2026年 底建成
- ・ 使用新型8-inch MCP-PMT
 - · 高时间分辨, 高量子效率
- 清华自研高性能电子学在设计和测试中
- 探索氯化锂水溶液探测方案
- ・基于慢液闪开发重建算法
 - 实现方向重建和粒子鉴别
- http://jinping.hep.tsinghua.edu.cn

谢谢!

BACKUP

Geo-neutrino

- Energy resolution : 500 PE/MeV, 4.4%/Sqrt[Evis]
- SlowLS, IBD, neutron capture on hydrogen

TABLE V. Summary of predicted geoneutrino event rates in TNU at Jinping.

Geo $\bar{\nu}_e$ (TNU)	Crust	Mantle	BSE
Th	10.6 ± 0.8	2.1 ± 0.5	12.7 ± 1.0
U	38.4 ± 6.6	8.3 ± 2.3	46.7 ± 6.7
Th + U	49.0 ± 7.3	10.4 ± 2.7	59.4 ± 7.6

TABLE VI. Geoneutrino and reactor neutrino event rates and total events with an exposure of 3 kt \times 1,500 days at Jinping.

	C	Geoneutrino			Reactor	
	²³⁸ U	²³² Th	Total	FER	SER	
Event Rate (TNU)	46.7	12.7	59.4	27.8	6.8	
Total Events	414.5	113.6	527.3	246.8	60.4	

Sensitivity

Table 11. Expected event rates for the supernova relic neutrinos and the corresponding backgrounds with $E_{\rm vis}$ in the range around 10–30 MeV. For the signal, the ranges of several models' predictions are printed. Background rates are calculated assuming a liquid scintillator target, and the atmospheric CC and NC background rates in parentheses are the results with a slow liquid scintillator target.

event rate	$\frac{1}{\text{kton-year}}$	$\frac{1}{10 \text{ kton-year}}$	$\frac{1}{20 \text{ kton-year}}$
signal	0.05 – 0.66	0.5 - 6.6	1 - 13
accidental	0	0	0
reactor	0	0	0
fast neutron	$0.7 imes10^{-3}$	7×10^{-3}	14×10^{-3}
$^{9}\mathrm{Li}/^{8}\mathrm{He}$	1×10^{-3}	10×10^{-3}	20×10^{-3}
atmos. CC	0.2(0.1)	2(1)	4(2)
atmos. NC	0.2~(0.1)	2(1)	4(2)
total bkg.	0.4~(0.2)	4(2)	8 (4)

neutrino energy/MeV

Fig. 11 The sensitivity of rejecting no upturn effect versus the exposure. More detector resolution and signal selection information can be seen in Sect. 4.1

surements [74, 75, 77]. Bottom plot: We assume a 2000-ton target mass, 1500-day exposure, a resolution of 500 PE/MeV, and the low metallicity hypothesis. The five points with error bars are the simulation results for pp, ⁷Be, pep, ¹⁵O and ⁸B, in which the central values are set to the true ones, the y-error bars include both statistical and systematic uncertainties and the x-error bars correspond to the range of energy measurement, while the ¹⁵O x-error is omitted for a clear view.