Charm physics at BESIII

Bai-Cian Ke Zhengzhou University

Outline

•BESIII dataset

•Charmed meson (D^0, D^+, D_s^+)

- pure leptonic decays
- semi-leptonic decays
- hadronic decays
- quantum correlation
- •Charmed baryon (Λ_c^+)
 - semi-leptonic decays
 - hadronic decays
- Prospect

BESIII dataset

•Charmed meson (D^0, D^+, D_s^+)

- pure leptonic decays
- semi-leptonic decays
- hadronic decays
- quantum correlation
- •Charmed baryon (Λ_c^+)
 - semi-leptonic decays
 - hadronic decays
- Summary

BESIII Data Taken near Threshold

- 20.3 fb⁻¹ at E_{cm} 3.773 GeV: $e^+e^- \rightarrow \psi(3770) \rightarrow D\overline{D}$
- 7.33 fb⁻¹ at E_{cm} 4.128 4.226 GeV: $e^+e^- \rightarrow D_s D_s^*$
- 4.5 fb⁻¹ at Ecm = 4.600-4.699 GeV: $e^+e^- \rightarrow \Lambda_c^+ \bar{\Lambda}_c^-$

Production of charm hadron pair

4

•BESIII dataset

•Charmed meson (D^0, D^+, D_s^+)

• pure leptonic decays

- semi-leptonic decays
- hadronic decays
- quantum correlation

•Charmed baryon (Λ_c^+)

- semi-leptonic decays
- hadronic decays
- Prospect

Pure leptonic D decay

$$J^{p} = 0^{-} \qquad \Gamma(D_{(s)}^{+} \to l^{+}\nu) = \frac{G_{F}^{2}f_{D_{(s)}^{+}}^{2}}{8\pi} |V_{cd(s)}|^{2}m_{l}^{2}m_{D_{(s)}^{+}}^{2} \left(1 - \frac{m_{l}^{2}}{m_{D_{(s)}^{+}}^{2}}\right)^{2}$$
$$J^{p} = 1^{-} \qquad \Gamma(D_{(s)}^{*+} \to l^{+}\nu) = \frac{G_{F}^{2}f_{D_{(s)}^{*+}}^{2}}{8\pi} |V_{cd(s)}|^{2}m_{l}^{2}m_{D_{(s)}^{*+}}^{2} \left(1 - \frac{m_{l}^{2}}{m_{D_{(s)}^{*+}}^{2}}\right)^{2} \left(1 + \frac{m_{l}^{2}}{m_{D_{(s)}^{*+}}^{2}}\right)^{2}$$

Decay constant $f_{D_{(s)}^+}$: Calibrate Lattice QCD

CKM matrix element $|V_{cd(s)}|$: Test the unitarity of CKM matrix

Lepton flavor universality

$$e^+ v_e : \mu^+ v_\mu : \tau^+ v_\tau$$

 $D^+ \ 10^{-5} : 1 : 2.67$
 $D_s^+ \ 10^{-5} : 1 : 9.75$

6

Updated results based on the 20 fb⁻¹ full dataset

to *D*⁺ decay constant measurement *To be updated using the 20 fb⁻¹ full dataset*

$D_s^+ \to l^+ \nu$

$$D_s^+ \to \mu^+ \nu$$

 $\mathcal{B}(D_s^+ \to \mu^+ \nu_\mu) = (5.294 \pm 0.108 \pm 0.085) \times 10^{-3}$ $f_{D_s^+} |V_{cs}| = 241.8 \pm 2.5_{\text{stat}} \pm 2.2_{\text{syst}} \text{ MeV}$

 $D_{s}^{+} \rightarrow \tau^{+}(\rho^{+}\nu)\nu$ $\mathcal{B}(D_s^+ \to \tau^+ \nu_{\tau}) = (5.29 \pm 0.25 \pm 0.20)\%$ $f_{D_s^+}|V_{cs}| = 244.8 \pm 5.8 \pm 4.8 \text{ MeV}$ Phys. Rev. D 104, 032001 (2021) $D_{\rm S}^+ \rightarrow \tau^+ (e^+ \nu \nu) \nu$ most precise $\mathcal{B}(D_s^+ \to \tau^+ \nu_{\tau}) = (5.27 \pm 0.10 \pm 0.12)\%$ $f_{D_s^+}|V_{cs}| = 244.4 \pm 2.3 \pm 2.9 \text{ MeV}$ Phys. Rev. Lett. 127, 171801 (2021) $D_s^+ \rightarrow \tau^+ (\mu^+ \nu \nu) \nu$ $\mathcal{B}(D_s^+ \to \tau^+ \nu) = (5.34 \pm 0.16 \pm 0.10)\%$ $f_{D_{c}^{+}}|V_{cs}| = (246.2 \pm 3.7_{\text{stat}} \pm 2.5_{\text{syst}}) \text{ MeV}.$ JHEP 09(2023) 124

 $\tau^+ \nu_{\tau}$ can contribute comparable statistics to $\mu^+ \nu$

Phys. Rev. D 108, 112001 (2023)

First experimental study of $D_s^{*+} \rightarrow e^+ v$

Phys. Rev. Lett. 131, 14180(2023)

First experimental result on $f_{D_S^{*+}}$

Search for $D^{*+} \rightarrow l^+ \nu$

Phys. Rev. D 110, 012003(2024)

No significant signal observed

 $\mathcal{B}(D^{*+} \to e^+ \nu_e) < 1.1 \times 10^{-5} @ 90\%$ C.L.

 $\mathcal{B}(D^{*+} \to \mu^+ \nu_{\mu}) < 4.3 \times 10^{-6} @ 90\% \text{ C.L.}$

with significance 2.9σ

•BESIII dataset

•Charmed meson (D^0, D^+, D_s^+)

- pure leptonic decays
- semi-leptonic decays
- hadronic decays
- quantum correlation
- •Charmed baryon (Λ_c^+)
 - semi-leptonic decays
 - hadronic decays
- Prospect

Semi-leptonic $D \rightarrow Pe^+\nu$

Form factor $f_+(0)$: Calibrate Lattice QCD

CKM matrix element $|V_{cd(s)}|$: Test the unitarity of CKM matrix

Test $e - \mu$ Lepton flavor universality

$$D_s^+ \to \eta^{(\prime)} e^+ \nu$$

$$D_s^+ \to \eta^{(\prime)} \mu^+ \nu$$

Phys. Rev. Lett. 123, 121801 (2019) Phys. Rev. D 108, 092003 (2023)

Phys. Rev. Lett. 132, 091802 (2024)

$$D^+ \to \eta' l^+ \nu$$

$$D_s^+ \to K^0 e^+ \nu$$

$$f_{+}^{\eta'}(0)|V_{cd}| = (5.92 \pm 0.56_{\text{stat}} \pm 0.13_{\text{syst}}) \times 10^{-2}$$

arXiv:2410.08603

$$f_{+}^{K^{0}}(0) = 0.636 \pm 0.049 \pm 0.013$$

Phys. Rev. Lett. 122, 061801 (2019)

arXiv:2406.1910

Comparison of decay constant

	f_{D^+}	$f_{D_s^+}$	
FLAG21(2+1+1)EPJC82(2022)8	69 212.1±0.7	ETM(2+1+1) PRD91(2015)054507 FMILC(2+1+1) PRD98(2018)074512 FLAG21(2+1+1) FRUC82(2022)860	247.2±4.1 ► 249.9±0.4
FMILC(2+1+1) PRD98(2018)07	212.7±0.6	TEAG21(2+1+1) EF3002(2022)009	249.9±0.3
FMILC(2+1+1) PRD90(2014)07	4509 212.6±0.4	$\begin{array}{lll} \mbox{HFLAV21} & \mbox{PRD107(2023)052008} \\ \mbox{CLEO} & \mbox{PRD79(2009)052002, $\tau_eV} \\ \mbox{CLEO} & \mbox{PRD80(2009)112004, $\tau_pV} \end{array}$	252.2±2.5 251.8±11.2±5.3 257.0±13.3±5.0
ETM(2+1+1) PRD91(2015)05	54507 207.4±3.8 ⊷ <mark>+</mark>	PBD82(2010)091103 T. V	
ETM(2+1+1) LATTICE2013	(2014)314 202.0±8 ⊷	Belle JHEP09(2013)139, $\tau_{e,\mu,\pi}v$ BESIII 6.32 fb ⁻¹ PRD104(2021)052009, $\tau_{\pi}v$ BESIII 6.32 fb ⁻¹ PRD104(2021)032001, $\tau_{\pi}v$	$244.0\pm8.0\pm12.0$ $261.1\pm4.8\pm7.2$ $449.7\pm6.0\pm4.2$ $459.7\pm6.0\pm4.2$ $459.7\pm6.0\pm4.2$ $459.7\pm6.0\pm4.2$ $459.7\pm6.0\pm4.2$
FMILC(2+1+1) LATTICE2013	(2014)405 212.3±0.3±1.0	BESIII 6.32 fb ⁻¹ PRL127(2021)171801, τ _e ν	251.1±2.4±3.0
FMILC(2+1+1) LAT2012(2012	0159 209.2±3.0±3.6 Hell	$\begin{array}{c} \text{BESIII 7.33 fb}^{\text{-1}} \begin{array}{c} \text{PRD108}(2023)092014, \tau_{\pi}\nu\\ \text{BESIII 7.33 fb}^{\text{-1}} \begin{array}{c} \text{JHEP09}(2023)124, \tau_{\mu}\nu\\ \text{BESIII 10.6 fb}^{\text{-1}} \begin{array}{c} \text{PRD110},052002, \tau\nu, D_{s}^{*+}D_{s}^{*-} \end{array} \end{array}$	255.0±4.0±3.1 253.4±4.0±3.7 259.6±3.7±4.6
HFLAV21 PRD107(2023)	52008 205.1±4.4 ⊷	BESIII 0.482 fb ⁻¹ PRD94(2016)072004, μν	245.5±17.8±5. #
CLEO,µv PRD78(2008)05	2003 207.2±8.7±2.5 ⊷	CLEO PRD79(2009)052001, μν BaBar PRD82(2010)091103, μν Belle JHEP09(2013)139, μν	256.7±10.2±4.0 264.9±8.4±7.6 248.8±6.6±4.8 →
BESIII,μν PRD89(2014)08	$51104,2.9$ fb ⁻¹ 204.2±5.3±1.7 \mapsto 2.7%	BESIII 3.19 fb ⁻¹ PRL122(2019)0/1802, μν BESIII 6.32 fb ⁻¹ PRD104(2021)052009, μν	253.0±3.7±3.6 +++
BESIII,τν PRL123(2019)2	11802,2.9fb ⁻¹ 224.7±22.5±11.3++++	BESIII 7.33 fb ⁻¹ PRD108(2023)112001, μν BESIII 10.6 fb ⁻¹ PRD110,052002, μν, D _s ⁺ D _s	248.4±2.5±2.2 253.2±6.1±3.7 ■
BESIII,μν arXiv:2410.076	26,20.3fb ⁻¹ 211.5 \pm 2.3 \pm 1.4 1.2%	BESIII Combined τv BESIII Combined $\tau v + \mu v$	253.93±1.54±1.82 252.08±1.34±1.82
0 10	0 200	0 100	200
1	_{D⁺} (MeV)	f _{Ds} (Me	∨)

Comparison of form factor

Experimental precision is comparable to the latest QCD result

Comparison of $|V_{cd(s)}|$

and a second sec	Senders Philippe and a send of the send of											
117							V					
	cd		1	CKMFitter	PTEP2022(2022)083C01	0.97349+0.00016	^c					
				HFLAV21	PRD107(2023)052008	0.9701±0.0081		CKMFitt	er PDG	0.97349±0.00016		
CKMfitter PDG	0.22486±0.00067	1					_	HFLAV2	1 PRD107.052008	0.9701±0.0081		
				CLEO	PRD79 (2009)052002, $\tau_e v$	0.981±0.044±0.021 ⊨	•					
HFLAV21 PRD107,052008	0.2208±0.0040	1		CLEO	PRD80 (2009)112004, τ_{p} V	1.001±0.052±0.019 H	H	CLEO	PRD80,032005 , K e⁺∨ _e	0.9648±0.0090±0.078		
				CLEO	PRD /9(2009)052001, t_{π}^{V} DDD (2009)052001, τ_{π}^{V}	1.0/9±0.068±0.016		DECIN	DDD02 112008 K0 at	0.077.0.000.0.010		
			1	BaBar	IHEP09(2013)139 τ v	0.955±0.055±0.04/ HH		BESIII		0.9//±0.008±0.016		
BESIII PRD92,072012, π [•] e ⁺ ν _e	0.2278±0.0034±0.0023	1.1	Q0/	BESIII 6 32 fb ⁻¹	PRD104(2021)052009, τ ₋ ν	0.972+0.023+0.016		BESIII	PRD 96.012002. K ⁰ e ⁺ v.	0.946±0.005±0.016	H	
		1.11	0 /0	BESIII 6.32 fb ⁻¹	PRD104 (2021)032001, $\tau_0 v$	0.980±0.023±0.019			, ···, ···,			
BFSIII PRD96.012002.π ⁰ e ⁺ ν.	0.2243+0.0058+0.0026			BESIII 6.32 fb ⁻¹	PRL127(2021)171801, τ _e ν	0.978±0.009±0.012		BESIII	PRD92,072012 , K e ⁺ v _e	0.9624±0.0034±0.0062		
Brown		T		BESIII 7.33 fb ⁻¹	PRD108(2023)092014 , $\tau_{\pi}v$	0.993±0.016±0.013		DECIN	PRI 122 011804 Kuty	0.0570.0.0050.0.0057		
DECIII PRD97 092009 metv	0.0064.0.0000.0.0010			BESIII 7.33 fb ⁻¹	JHEP09(2023)124, τ _μ ν	0.987±0.016±0.014		DEOIII	η πετεε, στισστ, τε μ	0.9572±0.0050±0.0057		
DESIII THEOR,002000,10 Ve	0.2204±0.0338±0.0318 -			BESIII 10.6 fb ⁻¹	PRD110(2024)052002, τv , $D_s^{*+}D_s^{*-}$	1.011±0.014±0.018	•	BESIII	arXiv:2408.09087,KI ⁺ v,	0.9611±0.0015±0.0043	~	$ \cap E 0 $
				OT DO	DDD50/2000\052001	1 000 0 040 0 047			· · ·			0.57
BESIII PRL124,231801,ημ.ν _μ	0.242±0.041±0.034	+		CLEO	PRD/9(2009)052001, μν	1.000±0.040±0.016		BESIII	PRL122,121801 , η e *ν _e	0.900±0.020±0.057	H+-	
				DaDar Balla	ΠΗΕΡΟΟ(2013)130 μν	1.052±0.055±0.029		DECIII	PRD108 092002 mety	0.012.0.014.0.057		
BESIII arXiv:2406.19190,K ⁰ e*	$v_e 0.238 \pm 0.018 \pm 0.036$	┝╋┯┥		BESIII 0 482 fb ⁻¹	PRD94(2016)072004, uv	0.956+0.069+0.020	.	DESIII		0.913±0.014±0.037	7	
				BESIII 3.19 fb ⁻¹	PRL122(2019)071802, uv	0.985±0.014±0.014		BESIII	PRL132,091802 , ημ ⁺ ν _μ	0.911±0.020±0.057	H-1	
BESIII PRD89,051104,μ*ν _μ	0.2165±0.0055±0.0020			BESIII 6.32 fb ⁻¹	PRD104(2021)052009, µv	0.973±0.012±0.015						
· · · · · · · · · · · · · · · · · · ·				BESIII 7.33 fb ⁻¹	PRD108(2023)112001, µv	0.968±0.010±0.009		BESIII	PRL122,121801, η'e'ν _e	0.903±0.060±0.077	H-H-H	
BESIII PBL123.211802.TV	0 238+0 024+0 012	i i i i i i i i i i i i i i i i i i i		BESIII 10.6 fb ⁻¹	PRD110(2024)052002 , $\mu\nu$, $D_s^{*+}D_s^{*}$	0.986±0.023±0.014		BESIII	PRD108.092002 n'e ⁺ v	0 0/1+0 0//+0 081		
							~17			0.341±0.044±0.001		
DECIL arXiv:2410.07626 utv	0.0040.0.0000.0.0014	4 4	0/	BESIII Combined	TV TV	0.9892±0.0060±0.0071	0.00	BESIII	PRL132,091802 , η'μ ⁺ ν _μ	0.907±0.067±0.078	H H	
	0.2242±0.0023±0.0014	╽╹╻╹┍┛	270	BESIII Combined	ιν + μν	0.9820±0.0052±0.0071	0.9%		1		т II.	
06 04 0	0 0 0	0	-		1 0		1		4	<u> </u>		1
·0.0 -0.4 -0.		.2			-1 0		I		-1	0		
									IV	_		
	CU				CS				C	3		

Both pure- and semi-leptonic decays contribute

We have also study... (请看马衡的报告)

$$D \to V l \nu$$
 $D_s^+ \to \phi \mu^+ \nu_e$

 $\mathcal{B} = (2.25 \pm 0.09 \pm 0.07) \times 10^{-2}$ $r_V = 1.58 \pm 0.17 \pm 0.02 \quad JHEP \ 12(2023)072$ $r_2 = 0.77 \pm 0.28 \pm 0.07$

 $D^0 \to K_1(1270)^- e^+ \nu$ $\mathcal{B} = (1.9 \pm 0.13 \pm 0.13 \pm 0.12) \times 10^{-4}$ Phys. Rev. Lett. 127, 131801 (2021) $D^+ \to K_1(1270)^0 e^+ \nu$ $\mathcal{B} = (2.30 \pm 0.26 \pm 0.18 \pm 0.25) \times 10^{-4}$ Phys. Rev. Lett. 123, 231801 (2019) $D \rightarrow K_1(1270) (\rightarrow K_S \pi \pi) e^+ \nu$ $D \rightarrow A l \nu$ arXiv:2403.19091 $D^0 \rightarrow K_S^0 \pi^{\cdot} \pi^0 e^+ v_e$ $-0.05 \quad \begin{array}{c} 0.00 \\ M_{\text{miss}}^2 (\text{GeV}^2/c^4) \end{array}$ $0.00 \ M_{\rm miss}^2 ({\rm GeV}^2/c^4)$ 0.05 -0.05 0.05 1.4 1.2 $D^+ \rightarrow b_1(1235)^0 e^+ \nu$ arXiv:2407.20551 $D^0 \rightarrow K_c^0 \pi^+ e^+ \nu$ $D^0 \rightarrow K_s^0 \pi^+ \pi^- \pi^0$ $D^0 \rightarrow K^0_L \pi^* \pi^* \pi^0$ MeV

1.4

U_{miss} (GeV)

18

1.2

 $M_{\omega\pi}$ (GeV/c²)

•BESIII dataset

•Charmed meson (D^0, D^+, D_s^+)

- pure leptonic decays
- semi-leptonic decays
- hadronic decays
- quantum correlation
- •Charmed baryon (Λ_c^+)
 - semi-leptonic decays
 - hadronic decays
- Prospect

Study of $D^+ \rightarrow K_S^0 a_0(980)^+$

Among $D \rightarrow SP$, $D^+ \rightarrow K_S^0 a_0 (980)^+$ is, except $\kappa \pi$, the only decay free of weak-annihilation contributions.

 $2.93 \text{fb}^{-1}@E_{cm} = 3.773 \text{ GeV}$ 1113 candidates with 98.2% purity

- $\mathcal{B}(D^+ \to K_S^0 a_0(980)^+, a_0(980)^+ \to \pi^+ \eta) = (1.33 \pm 0.05_{stat} \pm 0.04_{syst})\%$
- Provide sensitive constraints in the extraction of contributions from external and internal W-emission diagrams of $D \rightarrow SP$
- Understand the inconsistency between theory and experiment of the D $\rightarrow a_0(980)^+ P[1-3].$ [1]Phys. Rev. D 105, 033006 (2022). [2]Phys. Rev. D 67, 034024 (2003).

Observation of $D \rightarrow a_0(980)\pi$

arXiv:2404.09219

Amplitude	Phase (in unit rad)	FF(%)	Significance (σ)	BF $(\times 10^{-3})$
$D^0 \to \rho^0 \eta$	0 (fixed)	$15.2 \pm 1.7 \pm 1.0$	> 10	$0.19 \pm 0.02 \pm 0.01$
$D^0 \to a_0(980)^- \pi^+$	$0.06 \pm 0.16 \pm 0.12$	$5.9 \pm 1.3 \pm 1.0$	8.9	$0.07 \pm 0.02 \pm 0.01$
$D^0 \to a_0(980)^+ \pi^-$	$-1.06 \pm 0.12 \pm 0.10$	$44.0\pm4.0\pm5.3$	> 10	$0.55 \pm 0.05 \pm 0.07$
$D^{\circ} \to a_2(1320)^+ \pi^-$	$-1.16 \pm 0.25 \pm 0.23$	$2.1 \pm 0.9 \pm 0.8$	4.5	$0.03 \pm 0.01 \pm 0.01$
$D^0 \to a_2(1700)^+ \pi^-$	$0.08 \pm 0.17 \pm 0.23$	$5.5\pm1.8\pm2.7$	6.1	$0.07 \pm 0.02 \pm 0.03$
$D^0 \to (\pi^+\pi^-)_{S-\text{wave}}\eta$	$-0.92 \pm 0.29 \pm 0.14$	$3.9\pm1.8\pm2.1$	5.3	$0.05 \pm 0.02 \pm 0.03$
$r_{+/-}$		$7.5^{+2.5}_{-0.8} \pm 1.7$	7.7^*	-
$D^+ \to \rho^+ \eta$	$-4.03 \pm 0.19 \pm 0.13$	$9.3 \pm 3.0 \pm 2.1$	6.0	$0.20 \pm 0.07 \pm 0.05$
$D^+ \to (\pi^+ \pi^0)_V \eta$	$-0.64 \pm 0.22 \pm 0.19$	$15.8\pm4.8\pm5.2$	4.7	$0.34 \pm 0.11 \pm 0.11$
$D^+ \to a_0(980)^+ \pi^0$	0 (fixed)	$43.7 \pm 5.6 \pm 1.9$	9.1	$0.95 \pm 0.12 \pm 0.05$
$D^+ \to a_0 (980)^0 \pi^+$	$2.44 \pm 0.20 \pm 0.10$	$17.0\pm4.4\pm1.7$	7.9	$0.37 \pm 0.10 \pm 0.04$
$D^+ \to a_2(1700)^+ \pi^0$	$0.92 \pm 0.20 \pm 0.14$	$4.2 \pm 2.1 \pm 0.7$	3.6	$0.09 \pm 0.05 \pm 0.02$
$D^+ \to a_0 (1450)^+ \pi^0$	$0.63 \pm 0.41 \pm 0.30$	$7.0\pm2.8\pm0.7$	4.7	$0.15 \pm 0.06 \pm 0.02$
$r_{+/0}$		$2.6\pm0.6\pm0.3$	4.0^{*}	-

[1] Phys. Rev. D 105, 033006(2022).

The external W-emission dominates the $D \rightarrow a_0(980)\pi$ decays in the diquark scenario, contrary to expectations of its negligible contribution due to the very small $a_0(980)$ decay constant[1].

- $\mathcal{B}(D^0 \to \pi^+ \pi^- \eta) = (1.24 \pm 0.04_{stat} \pm 0.03_{syst})\%$
- $\mathcal{B}(D^+ \to \pi^+ \pi^0 \eta) = (2.18 \pm 0.12_{stat} \pm 0.03_{syst})\%$
- $a_0(1817)$ is not observed in both channels

Study of $D_s^+ \rightarrow \phi(\pi^+\pi^-\pi^0, K^+K^-)\pi^-$

First Measurement

Component	Phase (rad)	FF (%)	BF (10^{-3})
$f_0(1370)\rho^+$	0.0(fixed)	$24.9 \pm 3.8 \pm 2.1$	$5.08 \pm 0.80 \pm 0.43$
$f_0(980)\rho^+$	$3.99 \pm 0.13 \pm 0.07$	$12.6 \pm 2.1 \pm 1.0$	$2.57 \pm 0.44 \pm 0.20$
$f_2(1270)\rho^+$	$1.11 \pm 0.10 \pm 0.10$	$9.5\pm1.7\pm0.6$	$1.94 \pm 0.36 \pm 0.12$
$(ho^+ ho^0)_S$	$1.10 \pm 0.18 \pm 0.10$	$3.5\pm1.2\pm0.6$	$0.71 \pm 0.25 \pm 0.12$
$(ho(1450)^+ ho^0)_S$	$0.43 \pm 0.18 \pm 0.17$	$4.6\pm1.3\pm0.8$	$0.94 \pm 0.27 \pm 0.16$
$(\rho^+ \rho (1450)^0)_P$	$4.58 \pm 0.16 \pm 0.09$	$8.6\pm1.3\pm0.4$	$1.75 \pm 0.27 \pm 0.08$
$\phi((\rho\pi) \to \pi^+\pi^-\pi^0)\pi^+$	$2.90 \pm 0.15 \pm 0.18$	$24.9 \pm 1.2 \pm 0.4$	$5.08 \pm 0.32 \pm 0.10$
$\omega((\rho\pi) \to \pi^+\pi^-\pi^0)\pi^+$	$3.22 \pm 0.21 \pm 0.09$	$6.9\pm0.8\pm0.3$	$1.41 \pm 0.17 \pm 0.06$
$a_1^+(ho^0\pi^+)_S\pi^0$	$3.78 \pm 0.16 \pm 0.12$	$12.5\pm1.6\pm1.0$	$2.55 \pm 0.34 \pm 0.20$
$a_1^0((\rho\pi)_S \to \pi^+\pi^-\pi^0)\pi^+$	$4.82 \pm 0.15 \pm 0.12$	$6.3\pm1.9\pm1.2$	$1.29 \pm 0.39 \pm 0.24$
$\pi (1300)^0 ((\rho \pi)_P \to \pi^+ \pi^- \pi^0) \pi^+$	$2.22 \pm 0.14 \pm 0.08$	$11.7 \pm 2.3 \pm 2.2$	$2.39 \pm 0.48 \pm 0.45$

• $\mathcal{B}(D_s^+ \to \phi \pi^+, \phi \to \pi^+ \pi^- \pi^0) = (5.08 \pm 0.32 \pm 0.10) \times 10^{-3}$

• $\mathcal{B}(D_s^+ \to \phi \pi^+, \phi \to K^+ K^-) = (2.21 \pm 0.05 \pm 0.07)\%$

 $D_s^+ \to K^+ K^- \pi^+$

PRD 104, 012016

- $\frac{\mathcal{B}(\phi \to \pi^+ \pi^- \pi^0)}{\mathcal{B}(\phi \to K^+ K^-)} = 0.230 \pm 0.014_{stat} \pm 0.010_{syst}.$
- Deviates from PDG value(0.313 ± 0.010) % by > 4 σ .
 - First measurement of R_{ϕ} in charmed mesons, and the lower than expected value motivates further studies.

•BESIII dataset

•Charmed meson (D^0, D^+, D_s^+)

- pure leptonic decays
- semi-leptonic decays
- hadronic decays
- quantum correlation
- •Charmed baryon (Λ_c^+)
 - semi-leptonic decays
 - hadronic decays
- Prospect

Quantum Correlation

Quantum correlated data: $e^+e^- \rightarrow \psi(3770) \rightarrow D^0 \overline{D}^0$ Best laboratory to measure strong-phase parameters

CP-odd:
$$\psi(3770) = (D^0 \overline{D}^0 - D^0 \overline{D}^0) = (D_+ D_- - D_- D_+)$$

 $\int_{J^{PC}} = 1^{--}$
CP-even eigenstate
CP-odd eigenstate

Inputs for CPV studies at B experiments

•The CKM angle γ/ϕ_3 :

self-conjugated decay: CP fraction $F_+ \rightarrow \text{GLW/GGSZ}$ method; strong phase ci(') and $si(') \rightarrow \text{GGSZ}$ method non-self-conjugated decay: the coherence factor R and averaged strong phase difference $\delta \rightarrow \text{ADS}$ method

Determination of $\delta_{D}^{K\pi}$

An update measurement of the asymmetry between

CP-odd and CP-even eigenstate decays into $K^-\pi^+$

• $\delta_D^{K\pi} = (187.6^{+8.9+5.4}_{-9.7-6.4})$

EPJC 82, 1009 (2022)

Determination of CP fraction

 $D^0 \rightarrow \pi^+ \pi^- \pi^+ \pi^-$ PRD 106, 092004(2022)

 $D^0 \rightarrow K^+ K^- \pi^+ \pi^ F_{+} = 0.735 \pm 0.015 \pm 0.005$ $F_{+} = 0.730 \pm 0.037 \pm 0.021$ PRD 107, 032009(2023)

 $D^0 \rightarrow K_s^0 \pi^- \pi^+ \pi^0$ $F_+ = 0.235 \pm 0.010 \pm 0.002$ PRD 108, 032003 (2023)

•BESIII dataset

•Charmed meson (D^0, D^+, D_s^+)

- pure leptonic decays
- semi-leptonic decays
- hadronic decays
- quantum correlation

•Charmed baryon (Λ_c^+)

- semi-leptonic decays
- hadronic decays

Prospect

Study of $\Lambda_c^+ \to \Lambda e^+ \nu$

•BESIII dataset

•Charmed meson (D^0, D^+, D_s^+)

- pure leptonic decays
- semi-leptonic decays
- hadronic decays
- quantum correlation

•Charmed baryon (Λ_c^+)

- semi-leptonic decays
- hadronic decays
- Prospect

Partial wave analysis of the charmed baryon hadronic decay $\Lambda_c^+ \rightarrow \Lambda \pi^+ \pi^0$

 $\Lambda_{\rm c}^+ \rightarrow \Lambda \rho^+$: both factorizable(a) and non-factorizable(b-d) $\Lambda_{\rm c}^+ \rightarrow \Sigma (1385)\pi$: pure non-factorizable(e)

Provide important inputs to the theoretical calculations for non-factorizable Use new-developed Tensor Flow based package TF-PWA*. (*BESIII Preliminary: https://github.com/jiangyi15/tf-pwa) 29

Partial wave analysis of the charmed baryon hadronic decay $\Lambda_c^+ \rightarrow \Lambda \pi^+ \pi^0_{JHEP12}$ (2022) 033

The first PWA of $\Lambda_c^+ \rightarrow \Lambda \pi^+ \pi^0$

	Theoretical c	This work	PDG	
$10^2 \times \mathcal{B}(\Lambda_c^+ \to \Lambda \rho(770)^+)$	4.81 ± 0.58 [13]	$4.0 \ [14, \ 15]$	4.06 ± 0.52	< 6
$10^3 \times \mathcal{B}(\Lambda_c^+ \to \Sigma(1385)^+ \pi^0)$	2.8 ± 0.4 [16]	2.2 ± 0.4 [17]	5.86 ± 0.80	
$10^3 \times \mathcal{B}(\Lambda_c^+ \to \Sigma(1385)^0 \pi^+)$	2.8 ± 0.4 [16]	2.2 ± 0.4 [17]	6.47 ± 0.96	
$lpha_{\Lambda ho(770)^+}$	-0.27 ± 0.04 [13]	-0.32 [14, 15]	-0.763 ± 0.070	
$\alpha_{\Sigma(1385)^+\pi^0}$	$-0.91^{+0.4}_{-0.1}$	${}^{45}_{10} [17]$	-0.917 ± 0.089	
$lpha_{\Sigma(1385)^0\pi^+}$	$-0.91^{+0.4}_{-0.1}$	${}^{45}_{10} \ [17]$	-0.79 ± 0.11	

The first measurement of the decay asymmetry parameters for the relevant resonance Ref. [13]: PRD 101 (2020) 053002. Ref. [14,15]: PRD 46 (1992) 1042; PRD 55 (1997) 1697. Ref. [16]: EPJC 80 (2020) 1067. Ref. [17]: PRD 99 (2019) 114022

First Measurement of the Decay Asymmetry in the pure W-boson-exchange Decay $\Lambda_c^+ \to \Xi^0 K^+$

PRL 132, 031801 (2024)

Only receives the non-factorization contribution

$$e^+e^- \rightarrow \Lambda_c^+ \overline{\Lambda}_c^-$$

Two individual helicity $H_{\frac{1}{2}\frac{1}{2}}$ and $H_{\frac{1}{2}-\frac{1}{2}}$ $\alpha_{0} = \frac{\left|\frac{H_{1}}{2} - \frac{1}{2}\right|^{2} - 2\left|\frac{H_{1}}{2}\right|^{2}}{\left|\frac{H_{1}}{2} - \frac{1}{2}\right|^{2} + 2\left|\frac{H_{1}}{2}\right|^{2}} \qquad \Delta_{0} \text{ is phase shift} \\ \text{between them}$

$$\begin{split} \Lambda_c^+ &\to \Xi^0 K^+ \\ \alpha^2 + \beta^2 + \gamma^2 = 1 \\ \alpha = \frac{2Re(S^*P)}{|S|^2 + |P|^2} \end{split} \qquad \beta = \sqrt{1 - \alpha^2} \sin\Delta \\ \gamma = \sqrt{1 - \alpha^2} \cos\Delta \end{split}$$

First Measurement of the Decay Asymmetry in the pure W-boson-exchange Decay $\Lambda_c^+ \rightarrow \Xi^0 K^+$

- ★ Fixed the parameters in $e^+e^- → \Lambda_c^+ \overline{\Lambda}_c^$ and Ξ⁰ and Λ decays
- Free parameters of $\alpha_{E^0K^+}$ and $\Delta_{E^0K^+}$
- Six data sets between 4.6 and 4.7 GeV

First Measurement of the Decay Asymmetry in the pure W-boson-exchange Decay $\Lambda_c^+ \rightarrow \Xi^0 K^+$

 $\begin{aligned} \alpha_{\Xi^0 K^+} &= 0.01 \pm 0.16 \pm 0.03 & \delta_p - \delta_s = -1.55 \pm 0.25 \pm 0.05 \\ \Delta_{\Xi^0 K^+} &= 3.84 \pm 0.90 \pm 0.17 \text{ rad} & \text{or} \quad 1.59 \pm 0.25 \pm 0.05 \end{aligned}$

•BESIII dataset

•Charmed meson (D^0, D^+, D_s^+)

- pure leptonic decays
- semi-leptonic decays
- hadronic decays
- quantum correlation
- •Charmed baryon (Λ_c^+)
 - semi-leptonic decays
 - hadronic decays

Prospect

Prospect

20 fb⁻¹ of data set at 3.773 GeV is ready **Leptonic Decay**

	2.93 fb ⁻¹	20 fb ⁻¹
f_{D^+}	2.6%	1.0%
$ V_{cd} $	2.5%	1.0%
LFU	19%	8%

Semi-leptonic Decay

- All form-factor measurements which are currently statistically limited will be improved by a factor of up to 2.6.
- $\succ \text{ Determine FF for the first time:} D^0 \to K(1270)^- \nu_e, D^+ \to \overline{K}_1(1270)^0 e^+ \nu_e, D^+ \to \eta' \mu^+ \nu_{\mu}, D^0 \to a_0(980)^- e^+ \nu_e, D^+ \to a_0(980)^0 e^+ \nu_e$
- > $|V_{cd(s)}|$ with SL $D^{0(+)}$ decays in electron channels are expected to reach to 0.5%.

	LQCD	Expected
$f_{+}^{K}(0)$	2.4%	1.0%
$f_{+}^{\pi}(0)$	4.4%	0.5%

Prospect

Quantum correlation of neutral charmed meson pairs

Decay mode	Quantities	Status (2.93 fb ⁻¹)
$K_S^0 \pi^+ \pi^-$	C _i , S _i	Finished(2020)
$K_S^0 K^+ K^-$	C _i , S _i	Finished(2021)
$K^-\pi^+\pi^+\pi^-$	<i>R</i> ,δ	Finished(2020)
$K^+K^-\pi^+\pi^-$	$F_+ \text{ or } c_i, s_i$	F_+ Finished(2022), c_i , s_i on going
$\pi^+\pi^-\pi^+\pi^-$	$F_+ \text{ or } c_i, s_i$	F_+ Finished(2022), c_i , s_i on going
$K^-\pi^+\pi^0$	<i>R</i> ,δ	Finished(2021)
$K_S^0 K^{\pm} \pi^{\mp}$	<i>R</i> ,δ	On going
$\pi^+\pi^-\pi^0$	F_+	On going
$K_S^0 \pi^+ \pi^- \pi^0$	$F_+ \text{ or } c_i, s_i$	F_+ Finished(2023), c_i , s_i on going
$K^+K^-\pi^0$	F_+	On going
$K^-\pi^+$	δ	Updated Finished (2022)

- Making progress in past few years.
- Many ongoing projects, eventually 20 fb⁻¹ $\psi(3770)$ data samples.

Prospect

Amplitude analyses and branching fraction measurement of charmed meson hadronic decays

Precisely measuring the structure of golden modes, for example $D^+ \rightarrow K^- \pi^+ \pi^+$ First amplitude analysis of Cabbibo-suppressed decays. **Measuring the polarization of** $D \rightarrow VV$ in $D \rightarrow K3\pi$ or $D \rightarrow KK\pi\pi$

Searching for new physics and rare decays

Flavor changing neutral currents (FCNC) $e^+e^-, \mu^+\mu^-$ etc. Quantum number violation processes $e^+e^+, \mu^-\mu^-$ etc. Radiative decays $\gamma\omega, \gamma K_1$ etc.

Prospect at BESII

Energy thresholds

$e^+e^- \rightarrow \Lambda_c^+ \overline{\Sigma}_c^-$	4.74 GeV
$e^+e^- \rightarrow \Lambda_c^+ \overline{\Sigma}_c \pi$	4.88GeV
$e^+e^- \rightarrow \Sigma_c \overline{\Sigma}_c$	4.91 GeV
$e^+e^- \rightarrow \Xi_c \overline{\Xi}_c$	4.94 GeV
$e^+e^- \to \Omega_c \overline{\Omega}_c$	5.40GeV

- Unique data samples at the thresholds for charmed baryons.
 - Hadron physics: spectroscopy, (transition-)form-factors,

fragmentation ...

 Precise test of SM: weak decays, CKM, CP violation, rare/forbidden decays ...

Thanks for your attention