

Rare Decays at LHCb: Highlights of Recent Results

Liang Sun (Wuhan U.) 2024/11/09

Outline

- LHCb experiment in Runs 1-2
- FCNC b-hadron decays
 - Radiative decays
 - Angular observables
 - Amplitude analyses
 - LFU tests
- Other rare decays
 - Color suppressed, forbidden, rare charm/strange, etc.
- Summary & outlook

LHCb detector in Runs 1-2

By design: study CP-violating processes and rare b-hadron decays

- can profit from the large bb and cc cross-sections and from the larger production at high pseudorapidity
- $\sigma(pp \rightarrow b\bar{b}X) = 144 \pm 1 \pm 21 \,\mu b$ at 13 TeV in the LHCb acceptance $\Rightarrow \sim 25\%$ of the total inside LHCb [Phys.Rev.Lett. 118, 052002]
- $\sigma(pp \rightarrow c\bar{c}X) \sim 2.5 \text{ mb} \Rightarrow 1 \text{ MHz}$ $c\bar{c}$ pairs in the LHCb acceptance [JHEP 05 (2017) 074]

LHCb detector in Runs 1-2

By design: study CP-violating processes and rare b-hadron decays

- Particle detection in the forward region (down to the beam-pipe)
- Excellent resolution for localization of decay vertices (Vertex Locator) \rightarrow Excellent time resolution, enough to resolve $B_s B_s$ oscillation
- Excellent momentum resolution ($\sigma(m_B) \sim 25$ MeV for 2-body decays)
- Excellent particle identification to distinguish p, K[±], π^{\pm} , μ^{\pm}
- Excellent leptonic and hadronic triggers


```
m the large bb and
ons and from the
tion at high
v
```

 $) = 144 \pm 1 \pm 21 \,\mu b$

 $\Rightarrow \sim 25\%$ of the total inside LHCb [Phys.Rev.Lett. 118, 052002]

• $\sigma(pp \rightarrow c\bar{c}X) \sim 2.5 \text{ mb} \Rightarrow 1 \text{ MHz}$ $c\bar{c}$ pairs in the LHCb acceptance [JHEP 05 (2017) 074]

A list of recent LHCb $b \rightarrow s\gamma(\ell \ell)$ results

- Direct search of $B^0 \rightarrow \mu^+ \mu^- \gamma$ [JHEP 07 (2024) 101]
- Amplitude analysis of $\Lambda_b^0 \rightarrow pK^-\gamma$ [JHEP 06 (2024) 098]
- Amplitude analysis of $B_s^0 \rightarrow K^+ K^- \gamma$ [JHEP 08 (2024) 093]
- Photon polarization in $B_s^0 \rightarrow \phi e^+ e^-$, low q² [LHCb-PAPER-2024-030, prelim.]
- Angular analysis of $B^0 \rightarrow K^{*0}e^+e^-$, central q² [LHCb-PAPER-2024-022, prelim.]
- Angular analysis of $\Lambda_b^0 \rightarrow pK^-\mu^+\mu^-$ [arXiv:2409.12629]
- z-Expansion fit with $B^0 \to K^{*0} \mu^+ \mu^-$ [PRD 109 (2024) 052009, PRL 132 (2024) 131801]
- Local & non-local amplitudes in $B^0 \rightarrow K^{*0} \mu^+ \mu^-$ [JHEP 09 (2024) 026]
- LFU in $B_s^0 \rightarrow \phi \ell^+ \ell^-$ [arXiv:2410.13748]
- LFU in $B^+ \rightarrow K^+ \pi^+ \pi^- \ell^+ \ell^-$ [LHCb-PAPER-2024-046, prelim.]

FCNC b decays

NP might manifest in the loops

Wilson Coefficients: C_i

- → Perturbative, short distance physics
- → Describes heavy SM+NP effects

Operators: O_i

- → Non-perturbative, long distance physics
- → Strong interactions, difficult to calculate

\mathcal{O}_7 EM

 \mathcal{O}_9 Vector dilepton \mathcal{O}_{10} Axial-vector dilepton

Observables in FCNC b decays

Physics depends on $q^2 = m^2_{\parallel}$:

- Resonances (e.g. J/ψ, φ)
- Photon pole at low q²
- · Vector or axial vector current

 $d\Gamma/dq^2$

[JHEP 07 (2024) 101]

First direct search on $B_s^0 \rightarrow \mu^+ \mu^- \gamma$

- Previously Indirect limit from high-q² ISR in $B^0 \rightarrow \mu^+ \mu^-$
- Now, reconstruct γ , with 5.4 fb⁻¹ Run 2 data
- Sensitivity to $C_{7,9}$ in addition to C_{10} . Theory $Br{\sim}\,10^{-9}$ to 10^{-10} depends on $B_s{}^0\to\gamma\,FF$
- Upper limits are set:

$$\begin{split} \mathcal{B}(B^0_s \to \mu^+ \mu^- \gamma)_{\rm I} < 3.6 \, (4.2) \times 10^{-8}, \\ \mathcal{B}(B^0_s \to \mu^+ \mu^- \gamma)_{\rm II} < 6.5 \, (7.7) \times 10^{-8}, \\ \mathcal{B}(B^0_s \to \mu^+ \mu^- \gamma)_{\rm III} < 3.4 \, (4.2) \times 10^{-8}, \\ \mathcal{B}(B^0_s \to \mu^+ \mu^- \gamma)_{\rm I, \ with \ \phi \ veto} < 2.9 \, (3.4) \times 10^{-8}, \\ \mathcal{B}(B^0_s \to \mu^+ \mu^- \gamma)_{\rm comb.} < 2.5 \, (2.8) \times 10^{-8}, \end{split}$$

Radiative $b \rightarrow s\gamma$ decays

[LHCb-PAPER-2024-030, prelim.]

4D unbinned ML fit to mass and angular variables

Photon polarization in
$$B_s^0 \rightarrow \phi e^+ e^-$$

- First angular analysis in the low q²: [0.0009, 0.2615] GeV²
- Decay rates described as:

[LHCb-PAPER-2024-030, prelim.]

Photon polarization in
$$B_s^0 \rightarrow \phi e^+ e^-$$

- First angular analysis in the low q²: [0.0009, 0.2615] GeV²
- Decay rates described as:

$$\begin{split} \frac{1}{\mathrm{d}(\Gamma+\bar{\Gamma})/\mathrm{d}q^2} \frac{\mathrm{d}^3(\Gamma+\bar{\Gamma})}{\mathrm{d}\cos\theta_L\mathrm{d}\cos\theta_K\mathrm{d}\tilde{\varphi}} &= \frac{9}{32\pi} \left\{ \frac{3}{4} \left(1-F_L\right) \sin^2\theta_K + F_L\cos^2\theta_K \right. \\ &+ \left[\frac{1}{4} \left(1-F_L\right) \sin^2\theta_K - F_L\cos^2\theta_K \right] \cos 2\theta_L \\ &+ \frac{1}{2} \left(1-F_L\right) A_T^{(2)} \sin^2\theta_K \sin^2\theta_L \cos 2\tilde{\varphi} \\ &+ \left(1-F_L\right) A_T^{ReCP} \sin^2\theta_K \cos\theta_L \\ &+ \frac{1}{2} \left(1-F_L\right) A_T^{TmCP} \sin^2\theta_K \sin^2\theta_L \sin 2\tilde{\varphi} \right\} \,. \end{split}$$

$$\begin{split} F_L &: \text{Longitudinal polarisation of } \phi \text{ meson} \\ A_T^{ReCP} &: \text{related to the forward-backward asymmetry} \\ A_T^{(2)} &\text{and } A_T^{ImCP} \text{ are sensitive to photon polarisation} \\ A_T^{(2)}(q^2 \to 0) &= \frac{2Re(C_7C_7^{(*)})}{|C_7|^2 + C_7^{(*)}|^2} + \Delta_1^2, \\ A_T^{ImCP}(q^2 \to 0) &= \frac{2Im(C_7C_7^{(*)})}{|C_7|^2 + C_7^{(*)}|^2} + \Delta_2^2, \\ \Delta_i \text{ due to } \Delta m_s \text{ and } \Delta \Gamma_s \end{split}$$

Results consistent with SM

[LHCb-PAPER-2024-022, prelim.]

Angular analysis of
$$B^0 \rightarrow K^{*0}e^+e^-$$

- First angular analysis in the central q²: [1.1, 6.0] GeV²
- Decay rates described as:

[LHCb-PAPER-2024-022, prelim.]

Angular analysis of $B^0 \rightarrow K^{*0}e^+e^-$

[arXiv:2409.12629]

 $A^{\mu}_{\rm FB} = \frac{3}{2}\overline{K}_2$

 $q^2 |\text{GeV}^2/c^4|$

Angular analysis of
$$\Lambda_b^0 \rightarrow pK^-\mu^+\mu^-$$

- Measured branching fractions and angular moments in bins of q² and m_{pK}^2 and normalized with J/ψ
- Decay rate described by 46 angular moments:

$$\frac{d \Gamma^5}{d \vec{\Phi}} = \frac{3}{8 \pi} \sum_{i=0}^{46} K_i(q^2, m_{pK}^2) f(cos \theta_\mu, cos \theta_p, \phi) \label{eq:Kinetic}$$

- Forward-background asymmetry (A_{FB}) of $\mu^+\mu^-$ sensitive tc C_{9,10} (same sign-flip pattern as seen in $B^0 \to K^{*0}\mu^+\mu^-$)
- Large A_{FB} observed in hadron is the effect of interference of resonances with different parity

$$A_{\rm FB}^p = \frac{3}{2}\overline{K}_4 - \frac{\sqrt{21}}{8}\overline{K}_{10} + \frac{\sqrt{33}}{16}\overline{K}_{16}$$

$$= 1.00 \\ 0.75 \\ 0.50 \\ 0.25 \\ 0.00 \\ -0.25 \\ -0.50 \\ -0.75 \\ -0.50 \\ 0.00 \\ -0.25 \\ -0.50 \\ -0.75 \\ 0.50 \\ 0.75 \\ 0.50 \\ 0.75 \\ -0.50 \\ -0.50 \\ -0.75 \\ -0.50 \\ -0.75 \\ -0.50 \\ -0.75 \\ -0.50 \\ -0.75 \\ -0.50 \\ -0.75 \\ -0.50 \\ -0.75 \\ -0.50 \\ -0.75 \\ -0.50 \\ -0.75 \\ -0.50 \\ -0.75 \\ -0.50 \\ -0.75 \\ -0.50 \\ -0.75 \\ -0.50 \\ -0.75 \\ -0.50 \\ -0.75 \\ -0.50 \\ -0.75 \\ -0.50 \\ -0.75 \\ -0.50 \\ -0.75 \\ -0.50 \\ -0.$$

Data-driven approaches for $B^0 \rightarrow K^{*0} \mu^+ \mu^-$

- Non-local (charm loop) hadronic contributions bring in large theoretical uncertainties, and can mimic BSM effects
- Data-driven approaches are needed here!
 - z-expansion [PRL 132 (2024) 131801] Dispersion $K^{*0}\mu^{+}\mu^{-})/dq^{2}$ $\overline{u}, \overline{d}$ $\overline{u}.d$ $C_{7}^{(\prime)}$ $K^{(*)}$ $\mathcal{O}_{1,2}$ $C_{9}^{(\prime)}$ - $C_{9}^{(\prime)} - C_{10}^{(\prime)}$ Î B D_s $\mathrm{d}\mathcal{B}(B^0$. $C_{7}^{(\prime)} - C_{9}^{(\prime)}$ narrow $c\bar{c}$ broad $c\bar{c}$ and rescattering interference $D\bar{D}$ thresholds 15 5 10 $q^2 \,[{\rm GeV}^2/c^4]$

Data-driven approaches for $B^0 \rightarrow K^{*0} \mu^+ \mu^-$

LFU tests in $b \to s \ell \ell$

 $\begin{array}{lll} 0.1 < q^2 < 1.1 & 1.57 \substack{+0.28 \\ -0.25} \pm 0.05 & 1.38 \substack{+0.25 \\ -0.22} \pm 0.04 \pm 0.19 \pm 0.06 \\ 1.1 < q^2 < 6.0 & 0.91 \substack{+0.20 \\ -0.19} \pm 0.05 & 0.26 \pm 0.06 \pm 0.01 \pm 0.01 \pm 0.01 \\ 15.0 < q^2 < 19.0 & 0.85 \substack{+0.24 \\ -0.23} \pm 0.10 & 0.39 \pm 0.11 \pm 0.04 \pm 0.02 \pm 0.02 \end{array}$

First LFU test of $B^+ \to K \pi \pi \ell^+ \ell^-$

Searches for other rare decays

- $B_c^+ \to \pi^+ \mu^+ \mu^-$ [EPJC 84 (2024) 468]
- $B_s^{*0} \to \mu^+ \mu^-$ [LHCb-CONF-2024-003]
- $B \to D\mu^+\mu^-$ [JHEP 02 (2024) 032]
- $B_s^0 \rightarrow \phi \tau \mu$ [arXiv:2405.13103]

	$D^0 \rightarrow \pi^+$	$\pi^{-}e^{+}e^{-}$
$m(e^+e^-)$ region	$[MeV/c^2]$	\mathcal{B} $[10^{-7}]$
Low mass	211 - 525	< 4.81(5.39)
η	525 - 565	< 2.27(2.74)
ρ^0/ω	565 - 950	$4.53 \pm 1.00 \pm 0.72 \pm 0.62 \\ ^{*}$
ϕ	950 - 1100	$3.84 \pm 0.70 \pm 0.39 \pm 0.53$ *
High mass	> 1100	< 2.00 (2.17)

First observation!

* Statistical, systematic and uncertainties related to norm. BF

- $D^0 \rightarrow hhe^+e^-$ [LHCb-PAPER-2024-047, prelim.]
- $\Lambda_{c}^{+} \rightarrow p \mu^{+} \mu^{-}$ [PRD 110 (2024) 052007]
- $\Sigma^+ \rightarrow p \mu^+ \mu^-$ [LHCb-CONF-2024-002]

First observation!

Summary

- Studies on rare b decays are key to searches for BSM
- Many first searches, LFU tests, and angular analyses, esp. with electron channels
- Data-driven approaches improve our understanding of non-local effects in $B^0 \to K^{*0} \mu \mu$
- So far, no surprises, but tensions still persist (C₉?)
- Now a new detector and improved hadron trigger
 - 9.6 fb⁻¹ already collected for Run3
- And we will have Run4 and Upgrade-II!

LHCb-Upgrade I

Luminosity x5 wrt Run2 5.5 visible interactions/crossing Higher track multiplicity from ~<70> to ~<180>)

No more hardware trigger (full detector readout at 40 MHz) Tracking & PID detectors modified/replaced Higher granularity

In January 2023, a loss of control of the LHC primary vacuum system

⇒ plastic deformation of the RF foil separating VELO from LHC.

⇒ significant impact on 2023 physics programme

2022 – 2023 : commissioning and understanding the new detector

2024 : a lot of data !

LHCb_TDR_023

Observable	Current LHCb		Upgrade I		Upgrade II
	$(up to 9 fb^{-1})$		$(23{\rm fb}^{-1})$	$(50{\rm fb}^{-1})$	$(300{\rm fb}^{-1})$
CKM tests					
$\gamma \ (B \rightarrow DK, \ etc.)$	4°	[9, 10]	1.5°	1°	0.35°
$\phi_s \ \left(B^0_s \to J/\psi \phi ight)$	$32\mathrm{mrac}$	d [8]	$14\mathrm{mrad}$	$10\mathrm{mrad}$	$4\mathrm{mrad}$
$ V_{ub} / V_{cb} \ (\Lambda_b^0 \to p\mu^-\overline{\nu}_\mu, \ etc.)$	6% [29, 30]		3%	2%	1%
$a_{\rm sl}^d \ (B^0 \to D^- \mu^+ \nu_\mu)$	$36 \times 10^{-4} [34]$		8×10^{-4}	5×10^{-4}	2×10^{-4}
$a_{\rm sl}^{s} \ (B_s^0 \to D_s^- \mu^+ \nu_\mu)$	$33 \times 10^{-4} [35]$		$10 imes 10^{-4}$	$7 imes 10^{-4}$	$3 imes 10^{-4}$
Charm					
$\Delta A_{C\!P} \ \left(D^0 \to K^+ K^-, \pi^+ \pi^- \right)$	29×10^{-1}	$^{-5}$ [5]	$13 imes 10^{-5}$	$8 imes 10^{-5}$	$3.3 imes 10^{-5}$
$A_{\Gamma} \left(D^0 \rightarrow K^+ K^-, \pi^+ \pi^- \right)$	11×10^{-1}	$^{-5}$ [38]	$5 imes 10^{-5}$	$3.2 imes 10^{-5}$	$1.2 imes 10^{-5}$
$\Delta x \ (D^0 \to K^0_{\rm s} \pi^+ \pi^-)$	18×10^{-1}	$^{-5}$ [37]	$6.3 imes 10^{-5}$	$4.1 imes 10^{-5}$	$1.6 imes 10^{-5}$
Rare Decays					
$\mathcal{B}(B^0 \to \mu^+ \mu^-) / \mathcal{B}(B^0_s \to \mu^+ \mu^-)$	-) 69%	[40, 41]	41%	27%	11%
$S_{\mu\mu} \ (B^0_s o \mu^+ \mu^-)$			a l - 82	2 3 - 1 32	0.2
$A_{\rm T}^{(2)}~(B^0 o K^{*0} e^+ e^-)$	0.10	[52]	0.060	0.043	0.016
$A_{\rm T}^{\rm Im} \left(B^0 \to K^{*0} e^+ e^- \right)$	0.10	[52]	0.060	0.043	0.016
$\mathcal{A}_{\phi\gamma}^{\tilde{\Delta}\Gamma}(B^0_s o \phi\gamma)$	$^{+0.41}_{-0.44}$	[51]	0.124	0.083	0.033
$S_{\phi\gamma}(B^0_s \to \phi\gamma)$	0.32	[51]	0.093	0.062	0.025
$\alpha_{\gamma}(\Lambda_b^0 \to \Lambda \gamma)$	$^{+0.17}_{-0.29}$	[53]	0.148	0.097	0.038
Lepton Universality Tests					
$R_K (B^+ \to K^+ \ell^+ \ell^-)$	0.044	[12]	0.025	0.017	0.007
$R_{K^*} (B^0 \to K^{*0} \ell^+ \ell^-)$	0.12	[61]	0.034	0.022	0.009
$R(D^*) \ (B^0 o D^{*-} \ell^+ \nu_\ell)$	0.026	[62, 64]	0.007	0.005	0.002

Bremsstrahlung emission is significant for electrons

Energy loss $\propto E_e$ Energy loss \propto material

 \Rightarrow Use of a recovery algorithm

Before the magnet

- electron can be swept out (=lost !)
- kinematics are "wrong"

After the magnet

not an issue

LFU ratio: Experimental strategy

- R_X are measured as double ratios, to mitigate e/μ reconstruction differences

$$R_{X} = \underbrace{\begin{pmatrix} \mathcal{N}_{B \to X\mu^{+}\mu^{-}} \\ \mathcal{N}_{B \to XJ/\psi(\to\mu^{+}\mu^{-})} \end{pmatrix}}_{\mathcal{N}_{B \to Xe^{+}e^{-}}} \cdot \underbrace{\begin{pmatrix} \mathcal{C}_{B \to XJ/\psi(\to\mu^{+}\mu^{-})} \\ \mathcal{C}_{B \to X\mu^{+}\mu^{-}} \end{pmatrix}}_{\mathcal{C}_{B \to X\mu^{+}\mu^{-}}} \cdot \frac{\mathcal{C}_{B \to Xe^{+}e^{-}}}{\mathcal{C}_{B \to XJ/\psi(\toe^{+}e^{-})}}$$

- Yields: unbinned maximum-likelihood fits to the B invariant mass
- Efficiencies: simulation corrected for well-known MC/data differences

Resonant channels also used for checks/data driven studies

►
$$J/\psi$$
 and $\psi(2S)$ satisfy LFU, not mediated by $b \rightarrow s\ell\ell$

• $r_{J/\psi} = \frac{\mathscr{B}(B \to XJ/\psi(\to \mu\mu))}{\mathscr{B}(B \to XJ/\psi(\to ee))} \equiv 1$ Sensitive to e, μ differences

$$R_{\psi(2S)} = \frac{\mathscr{B}(B \to X(\psi(2S) \to \mu\mu))}{\mathscr{B}(B \to X(J/\psi \to \mu\mu))} \cdot \frac{\mathscr{B}(B \to X(J/\psi \to ee))}{\mathscr{B}(B \to X(\psi(2S) \to ee))} \equiv$$

Efficiency related systematics cancel in double ratio

Wilson Coeffients global fits

EPJS 233, 409-428 (2024)