

BESIII上粲介子半轻衰变到矢量介子和标量介子末态的研究

马衡 湖南大学

第六届粒子物理天问论坛 2024年11月09日@洛阳

Physics motivation \checkmark

Data and analysis method

Results in review

^{[]4} Summary and prospect

Physics motivation

November/09/2024

Physics motivation

Physics motivation

??? Why is the semi-leptonic decay of charmed meson?

- Clean environment: hadrons X can be separated from leptons pair.
- > High statistics of charmed meson at experiments.
 - ▷ CKM matrix elements $|V_{cs}|/|V_{cd}|$ meaurements → Test the unitarity of the CKM matrix (New Physics).

 $\succ \mathcal{R}_{\mu/e} = \mathcal{B}(D_{(s)} \to X\mu^+\nu_{\mu})/\mathcal{B}(D_{(s)} \to Xe^+\nu_e)$ measurement \rightarrow Test lepton flavor universality (LFU)

➢ Hadronic Form factor (FF) measurements → Test different QCD models (LQCD)

Heng Ma@HNU

Physics motivation \checkmark

Data and analysis method \checkmark

Results in review

^{[]4} Summary and prospect

- Symmetric e^+e^- collider @2 5GeV
- Pair-production near threshold
- ▷ DD@3.773GeV: ~20.3 fb⁻¹

 $2.93~{\rm fb}^{-1} @\ 2010-2011;\ 4.99~{\rm fb}^{-1} @\ 2021-2022;\ 8.16~{\rm fb}^{-1} @\ 2021-2022;\ 4.19~{\rm fb}^{-1} @\ 2022-2024$

 $> D_s D_s^*$ @4.13-4.23GeV: 7.33 fb⁻¹

E _{cm} (GeV)	Data taking year	$\mathcal{L}(\mathbf{fb^{-1}})$	ST <i>D</i> ⁰	ST <i>D</i> ⁺	ST D_s^+
3.773	2010-11 →2022-24	2.93 →20.3	2.7 M (~7 ×)	1.7 M (~7×)	
4.13-4.23	2012,2016-17,2019	7.33			0.8 M

Analysis method: Double Tag

Take Ds decay as an example (complicated case)

$\mathcal{B}_{\gamma}(D_S^* \to \gamma D_S)$

Mature method

- Absolute BF measurement
- Low background
- Systematic cancellation (tag)

$$U_{\text{miss}} = E_{\text{miss}} - |\vec{p}_{\text{miss}}|$$
$$M_{\text{miss}}^2 = E_{\text{miss}}^2 - |\vec{p}_{\text{miss}}|^2$$

> Minimize the negative log-likelihood function.:

$$NLL = -\sum_{i=1}^{N} \ln \frac{\omega(\xi_i, \eta)}{\sigma_s}$$

 $\omega(\xi_i, \eta)$ is the decay intensity, σ_s is the normalization factor, using signal Monte Carlo samples:

N T

$$\sigma_{s} = \int d\xi \,\omega(\xi,\eta) \,\epsilon(\xi) \,\propto \,\frac{1}{N_{selected}} \sum_{k=1}^{N_{selected}} \frac{\omega(\xi_{k},\eta)}{\omega(\xi_{k},\eta_{0})}$$

When the background is low, it can be directly subtracted in the NLL.

$$NLL = (-lnL_{data}) - (-lnL_{bkg})$$

$$\blacktriangleright \text{ background is high : } -\sum_{i=1}^{N} \ln\left((1-f_b) \frac{\omega(\xi_i,\eta)}{\int d\xi_i \omega(\xi_i,\eta) \epsilon(\xi_i)} + f_b \frac{B_\epsilon(\xi_i)}{\int d\xi_i B_\epsilon(\xi_i) \epsilon(\xi_i)}\right)$$

November/09/2024

e

Physics motivation √

Data and analysis method \checkmark

B Results in review \checkmark

^{[]4} Summary and prospect

The differential decay rate of $D_{(s)} o V \,\ell \, u_{\ell}$

$\Gamma(D_{(s)} \to V\ell^+ v_{\ell}) \propto |V_{cd(s)}|^2 \mathfrak{T}(A_1(q^2), A_2(q^2), V(q^2), \dots) dm^2 dq^2 dcos(\theta_h) dcos(\theta_{\ell}) d\chi$ $V: \rho, \omega, K^*, \phi$ Theoretical : Phys. Rev. **137**, B438(1965), Phys.Reive.D 46,5040(1992)

- \succ The decay intensity ${\mathfrak T}$ can include components of S/P/D wave processes.
- Unbinned maximum likelihood method.

(implemented based on the RooFit framework).

> Form factor (single pole parameterization, double pole ...)

$$\begin{aligned} A_i(q^2) &= \frac{A_i(0)}{1 - q^2 / M_A^2} & V(q^2) = \frac{V(0)}{1 - q^2 / M_V^2} \\ r_V &= \frac{V(0)}{A_1(0)} & r_2 = \frac{A_2(0)}{A_1(0)} \end{aligned}$$

c -> s semi-leptonic decay: $D^+ o \overline{K}^{*0} e^+ u_e$

Heng Ma@HNU

Phys. Rev. D 94, 032001(2016) ≻2.93fb⁻¹ data @3.773GeV

$$\begin{split} & \gg N_{sig} = 18262 \text{ (background Level: 0.8\%)} \\ & \gg \mathcal{B}(D^+ \to K^- \pi^+ e^+ \nu_e) = (3.77 \pm 0.03 \pm 0.08)\% \\ & \gg \mathcal{B}(D^+ \to \overline{K}^{*0} e^+ \nu_e) = (5.31 \pm 0.05 \pm 0.12)\% \\ & f_{\text{S-wave}} = (6.05 \pm 0.22 \pm 0.18)\% \\ & f_{P-wave} = (93.93 \pm 0.22 \pm 0.18)\% \end{split}$$

➢ Form factor:

 $\begin{aligned} r_V &= 1.411 \pm 0.058 \pm 0.007, \\ r_2 &= 0.788 \pm 0.042 \pm 0.008 \\ \text{input } G_f, \tau_{D^+}, |V_{cs}| \twoheadrightarrow \\ A_1(0) &= 0.589 \pm 0.010 \pm 0.012 \text{ (Zero-width)} \\ A_1(0) &= 0.619 \pm 0.011 \pm 0.013 \text{ (Considering width)} \end{aligned}$

 $A_1(0) = 0.019 \pm 0.01$ November/09/2024

c -> s semi-leptonic decay: $D^0 o K^{*-} e^+ u_{ m e}$

▶ 2.93fb⁻¹ data @3.773GeV

 $> N_{sig} = 3112 \pm 64 \text{ (background level: 6.0\%)}$ $> \mathcal{B}(D^0 \to \overline{K}^0 \pi^- e^+ \nu_e) = (1.434 \pm 0.029 \pm 0.032)\%$ $> \mathcal{B}(D^0 \to K^{*-} e^+ \nu_e) = (2.02 \pm 0.04 \pm 0.04)\%$ $f_{\text{S-wave}} = (5.51 \pm 0.97 \pm 0.62)\%$ $f_{P-wave} = (94.52 \pm 0.97 \pm 0.76)\%$

First measurement of the form factor. :

 $r_V = 1.46 \pm 0.07 \pm 0.02$,

 $r_2 = 0.67 \pm 0.06 \pm 0.01$

November/09/2024

Heng Ma@HNU

c -> s semi-leptonic decays: $D^0 o K^{*-} \mu^+ u_{\mu}$

> 7.93 fb⁻¹ data @3.773*GeV* $> N_{sig} = 6436 \pm 119$ (background level: 12.6%) $\geq \mathcal{B}(D^0 \to K^- \pi^0 \mu^+ \nu_\mu) = (0.729 \pm 0.014 \pm 0.011)\%$ $\gg \mathcal{B}(D^0 \to K^{*-} \mu^+ \nu_{\mu}) = (2.062 \pm 0.039 \pm 0.032)\%$ $f_{\text{S-wave}} = (5.76 \pm 0.35 \pm 0.29)\%$ $f_{P-wave} = (94.24 \pm 0.35 \pm 0.29)\%$ $\mathcal{B}(D^0 \to K^{*-} \mu^+ \nu_{\mu}) / \mathcal{B}(D^0 \to K^{*-} e^+ \nu_e) = 0.96 \pm 0.08$ First measurement of the form factor. :

 $r_V = 1.37 \pm 0.09 \pm 0.03,$ $r_2 = 0.76 \pm 0.06 \pm 0.02$ November/09/2024

c -> s semi-leptonic decays: $D^+ o \overline{K}^{*0} e^+ {m u}_{ m e}$

J. High Energ. Phys. 10, 199 (2024)

➤ 7.93 fb⁻¹ data @3.773GeV

N_{sig} = 3852 ± 75 (background level: 6.54%) $B(D^+ \to K_S^0 \pi^0 e^+ \nu_e) = (0.881 \pm 0.017 \pm 0.016)\%$ $B(D^+ \to \overline{K}^{*0} e^+ \nu_e) = (4.97 \pm 0.011 \pm 0.012)\%$ f_{S-wave} = (5.41 ± 0.35 ± 0.37)%
f_{P-wave} = (93.88 ± 0.27 ± 0.29)%

Measurement of the form factor. :

 $r_V = 1.43 \pm 0.07 \pm 0.03$,

 $r_2 = 0.72 \pm 0.06 \pm 0.02$

c -> s semi-leptonic decay: $D_s^+ \rightarrow K^+ K^- \mu^+ \nu_{\mu}$

0.20

- ▶ 7.33 fb⁻¹ data @ 4.13-4.23 GeV
- $> N_{\rm sig} = 1725 \pm 68$ for BF measurement

 $\mathcal{B}(D_s^+ \to \phi \mu^+ \nu_\mu) = (2.25 \pm 0.09 \pm 0.07) \times 10^{-2}$

 $\mathcal{B}(D_s^+ \to \phi \mu^+ \nu_{\mu}) / \mathcal{B}(D_s^+ \to \phi e^+ \nu_e) = 0.94 \pm 0.08 \rightarrow \text{No LFU violation}$

 $\mathcal{B}(D_s^+ \to f_0(980)\mu^+\nu_{\mu}) \cdot \mathcal{B}(f_0(980) \to K^+K^-) < 5.45 \times 10^{-4} @90\% \text{ C.L. } (\sim 2.2\sigma) \text{ for } 10^{-1} \text{ GeV}$

First FF measurement based on single pole parameterization:

▶ Partial wave analysis is performed → ϕ dominate

 $\succ \mu$ mass is considered in the formula

Table 5.	Measured FF ra	atios and compariso	on with previous m	easurements.
	Experiments	r_V	r_2	
	PDG [42]	$1.80 {\pm} 0.08$	$0.84{\pm}0.11$	
	This analysis	$1.58{\pm}0.17{\pm}0.02$	$0.71{\pm}0.14{\pm}0.02$	
	BABAR [25]	$1.807{\pm}0.046{\pm}0.065$	$0.816{\pm}0.036{\pm}0.030$	
	FOCUS [58]	$1.549{\pm}0.250{\pm}0.148$	$0.713{\pm}0.202{\pm}0.284$	
	Theory	r_V	r_2	
	CCQM [5]	$1.34{\pm}0.27$	$0.99 {\pm} 0.20$	
	CQM [6]	1.72	0.73	
	LFQM [7]	1.42	0.86	
	LQCD [3]	$1.72{\pm}0.21$	$0.74{\pm}0.12$	
	$\mathrm{HM}\chi\mathrm{T}$ [8]	1.80	0.52	

November/09/2024

c -> d semi-leptonic decays : $D_s^+ o K^{*0} e^+ v_e$

Phys. Rev. Lett. 122, 061801 (2019)

- ➢ 3.19 fb⁻¹data @4.18 GeV
- $\gg N_{sig}(D_s^+ \to K^{*0}e^+\nu_e) = 155.0 \pm 17.2$
- $\succ \mathcal{B}(D_s^+ \to K^{*0} e^+ \nu_e) = (2.37 \pm 0.26 \pm 0.20) \times 10^{-3}$
- Consistent with multiple theoretical calculations:
 - $r_V = 1.67 \pm 0.34 \pm 0.16, r_2 = 0.77 \pm 0.28 \pm 0.07$
- Consistent with the expectations of Lattice QCD and U-spin
 - $(d \leftrightarrow s)$ symmetry: Form factors are insensitive to spectator quarks

Use **BESIII** and **CLEO** measurement

	Values
$f^{D^+_s o K^0}_+(0)/f^{D^+ o \pi^0}_+(0)$	$1.16 \pm 0.14 \pm 0.02$
$r_V^{D_s^+ ightarrow K^{st 0}}/r_V^{D^+ ightarrow ho^0}$	$1.13 \pm 0.26 \pm 0.11$
$r_2^{D_s^+ \to K^{*0}} / r_2^{D^+ \to \rho^0}$	$0.93 \pm 0.36 \pm 0.10$

c -> d semi-leptonic decays : $D^0 o ho^- e^+ u_e$

PRD 92, 071101(R)(2015)	$D^+\!\rightarrow\omega\;e^+\!\nu_e$	$1.24{\pm}0.09{\pm}0.06$	H●H
PRL 122, 061801(2019)	$D_s^+ \to K^{*0}(K^+\pi^{\text{-}}) \; e^+\!\nu_e$	$1.67{\pm}0.34{\pm}0.16$	# <mark>-</mark> •H
PRL 122, 062001(2019)	$D \to \rho \; e^+ v_e$	$1.70{\pm}0.08{\pm}0.05$	⊦ ≁I
arXiv:2409.04276	$D^0 \to \rho^\text{-} e^+ \nu_e$	$1.55{\pm}0.08{\pm}0.04$	•••
PRD 94 032001(2016)	$D^+ \to \overline{K}^{*0}(K^{\!\!}\pi^+)e^+\!\nu_e$	1.411±0.058±0.007	H el
PRD 99 0111003(R)(2019)	$D^0 \to K^{\mbox{\tiny $^{\bullet}$}}(K^0_S\pi\mbox{\tiny $^{\bullet}$}) \ e^+\nu_e$	$1.46{\pm}0.07{\pm}0.02$	H <mark>H</mark> H
JHEP12(2023)072	$D^+_S \to \phi(K^{\!$	$1.58{\pm}0.17{\pm}0.02$	⊢ •-1
arXiv:2403.10877	$D^0 \to K^{\mbox{\tiny +-}}(K^{\mbox{\tiny +-}}\pi^0)\mu^{\mbox{\tiny +-}}\nu_\mu$	$1.37 {\pm} 0.09 {\pm} 0.03$	⊢• <mark>⊣</mark>
JHEP10(2024)199	$D^+ \rightarrow \overline{K}^{*0}(K^0_S \pi^0) e^+ \nu_e$	1.43±0.07±0.03	
-4 -3	-2 -1	0 1	1 2
	$\mathbf{r}_{\mathbf{V}}$		

PRD 92, 071101(R)(2015)	$D^{+} \rightarrow \omega \; e^{+} \nu_{e}$	$1.06 {\pm} 0.15 {\pm} 0.05$	┞╼┥
PRL 122, 061801(2019)	$D_s^+ \to K^{*0}(K^+\pi^{\cdot}) \; e^+ \nu_e$	0.77±0.28±0.07	r - <mark></mark> - I
PRL 122, 062001(2019)	$D \to \rho \; e^+ \nu_e$	0.85±0.06±0.04	ret 👘
arXiv:2409.04276	$D^0\to\rho^{\text{-}}e^{\text{+}}\!\nu_e$	$0.82{\pm}0.06{\pm}0.03$	Her
PRD 94 032001(2016)	$D^+ \to \overline{K}^{*0}(K^{\text{-}}\pi^{\text{+}})e^{\text{+}}\nu_e$	$0.788 {\pm} 0.042 {\pm} 0.008$	i o i
PRD 99 0111003(R)(2019)	$D^0 \rightarrow K^{*}(K^0_S\pi^{\text{-}}) \; e^+ \nu_e$	0.67±0.06±0.01	H <mark>el</mark>
JHEP12(2023)072	$D^+_S \to \phi(K^{\!\!}K^{\!\!})\mu^+\!\nu_\mu$	$0.71 {\pm} 0.14 {\pm} 0.02$	⊢ <mark>∎</mark> -I
arXiv:2403.10877	$D^0 \to K^{*\text{-}}(K^{\text{-}}\pi^0)\mu^{\text{+}}\nu_\mu$	0.76±0.06±0.02	
JHEP10(2024)199	$D^+ \rightarrow \overline{K}^{*0}_{S}(K^0_S \pi^0_{-}) e^+ v_e$	0.72±0.06±0.02	
-4	-2	0	
	\mathbf{r}_2		

The differential decay rate of $D_{(s)} \rightarrow S \ell \nu_{\ell}$

$$\begin{split} \Gamma(D_{(s)} \to S\ell^+ \nu_\ell)/dq^2 &\propto |V_{cd(s)}|^2 |f_+(q^2)|^2 \\ S: a_0(980), f_0(500), f_0(980) \end{split}$$

 \succ Use least χ^2 method to fit the measured partial decay width in different q^2 bin.

 \succ Taking the correlations among q^2 bins into account.

> FF in different form (The width needs to be considered ?)

> Point-like differential decay rate:

$$\frac{d\Gamma(D_{(s)} \to S\ell^+ \nu_\ell)}{dq^2} = \frac{G_F^2 |V_{cd(s)}|^2}{24\pi^3} p_{f_0}^3 |f_+(q^2)|^2$$

> Double differential decay rate:

(N.N.Achasov et al., PRD102,016022(2020); W. Wang, PLB759,501(2016))

$$\frac{d^2 \Gamma(D_{(s)} \to S\ell^+ \nu_\ell)}{ds dq^2} = \frac{G_F^2 |V_{cd(s)}|^2}{192\pi^4 m_{D_{(s)}}^3} \lambda^{\frac{3}{2}} \left(m_{D_{(s)}}^2, s, q^2 \right) |f_+(q^2)|^2 P(s)$$

$$P(s) = \begin{cases} \frac{g_1 \rho_{\pi\pi/\pi\eta}}{|m_0^2 - s - i(g_1 \rho_{\pi\pi/\pi\eta} + g_1 \rho_{KK})|^2}, & \text{Flatte: } f_0(980)/a_0(980) \\ \frac{m_{f_0} \Gamma(s)}{(s - m_{f_0}^2)^2 + m_{f_0}^2 \Gamma^2(s)}, & \text{RBW: } f_0(500) \\ \frac{m_r \Gamma_{tot}(s)}{(m_r^2 - s - g_1^2 \frac{s - s_A}{m_r^2 - s_A} z(s))^2 + m_r^2 \Gamma_{tot}^2(s)}, & \text{Bugg: } f_0(500) \end{cases}$$

November/09/2024

Heng Ma@HNU

First observation of $D^0 ightarrow a_0 (980)^- e^+ \nu_e$

Phys. Rev. Lett. 121, 081802 (2018)

➤ 2.93 fb⁻¹ data @ 3.773 GeV

 $> N_{\rm sig}^{D^0} = 25.7^{+6.4}_{-5.7}$

 $> N_{\rm sig}^{D^+} = 10.2^{+5.0}_{-4.1}$

> Branching fraction (BF) help to understand
the nature of the $a_0(980)$

Decay	BF ($\times 10^{-4}$)	Significance
$D^0 \to a_0(980)^- e^+ \nu_e, a_0(980)^- \to \eta \pi^-$	$1.33^{+0.33}_{-0.29}\pm 0.09$	6.4σ
$D^+ \to a_0(980)^0 e^+ \nu_e, a_0(980)^0 \to \eta \pi^0$	$1.66^{+0.81}_{-0.66} \pm 0.11$ < 3.0 (90% C.L.)	2.9σ

Phys. Rev. Lett. 132, 141901 (2024)

 \succ 7.33 fb⁻¹ data @ 4.128-4.226 GeV → $N_{sig} = 439 \pm 33$

 $\succ \mathcal{B}(D_s^+ \to f_0(980)e^+ \nu_e, f_0(980) \to \pi^+\pi^-) = (1.72 \pm 0.13 \pm 0.10) \times 10^{-3}$

- → $s\bar{s}$ is dominant based on $|f_0(980)\rangle = \sin\phi |\frac{1}{\sqrt{2}}(u\bar{u} + d\bar{d})\rangle + \cos\phi |s\bar{s}\rangle$ $\phi = (19.7 \pm 12.8)^\circ$
- **First form factor measurement** with simple pole form:
- → $f_{+}^{f_0}(0)|V_{cs}| = 0.504 \pm 0.017 \pm 0.035$

→
$$f_{+}^{f_{0}}(0) = 0.518 \pm 0.018 \pm 0.036$$
 ($|V_{cs}| = 0.97349 \pm 0.00016$ PDG2022)

	This work	CLFD $[6]$	DR [6]	QCDSR [7]	QCDSR $[8]$	LCSR [9]	LFQM [11]	CCQM [12]
$f_{+}^{f_{0}}(0)$	$0.518 \pm 0.018_{\rm stat} \pm 0.036_{\rm syst}$	0.45	0.46	0.50 ± 0.13	0.48 ± 0.23	0.30 ± 0.03	0.24 ± 0.05	0.36 ± 0.02
Difference (σ)		1.7	1.4	0.1	0.2	4.3	4.3	2.8
ϕ	$\phi = (19.7 \pm 12.8)^{\circ}$	$(32 \pm 4.8)^{\circ}$	$(41.3 \pm 5.5)^{\circ}$	35°	$(8^{+21}_{-8})^{\circ}$		$(56\pm7)^{\circ}$	31°

First search of D⁺_s → f₀(500)e⁺ v_e, f₀(500) → π⁺π⁻ (M_{π⁺π⁻} < 0.45 GeV/c²)
 B(D⁺_s → f₀(500)e⁺ v_e, f₀(500) → π⁺π⁻) < 3.3 × 10⁻⁴

November/09/2024

Heng Ma@HNU

Phys. Rev. Lett. 132, 141901 (2024)

 \succ 7.33 fb⁻¹ data @ 4.128-4.226 GeV → $N_{sig} = 439 \pm 33$

 $\gg \mathcal{B}(D_s^+ \to f_0(980)e^+ \nu_e, f_0(980) \to \pi^+\pi^-) = (1.72 \pm 0.13 \pm 0.10) \times 10^{-3}$

- → $s\bar{s}$ is dominant based on $|f_0(980)\rangle = \sin\phi |\frac{1}{\sqrt{2}}(u\bar{u} + d\bar{d})\rangle + \cos\phi |s\bar{s}\rangle$ $\phi = (19.7 \pm 12.8)^{\circ}$
- **First form factor measurement** with simple pole form:
- $\rightarrow f_{\pm}^{f_0}(0)|V_{cs}| = 0.504 \pm 0.017 \pm 0.035$

→
$$f_{+}^{f_{0}}(0) = 0.518 \pm 0.018 \pm 0.036$$
 ($|V_{cs}| = 0.97349 \pm 0.00016$ PDG2022)

	This work	CLFD [6]	DR [6]	QCDSR [7]	QCDSR $[8]$	LCSR [9]	LFQM [11]	CCQM [12]
$f_{+}^{f_{0}}(0)$	$0.518 \pm 0.018_{\rm stat} \pm 0.036_{\rm syst}$	0.45	0.46	0.50 ± 0.13	0.48 ± 0.23	0.30 ± 0.03	0.24 ± 0.05	0.36 ± 0.02
Difference (σ)		1.7	1.4	0.1	0.2	4.3	4.3	2.8
ϕ	$\phi = (19.7 \pm 12.8)^{\circ}$	$(32 \pm 4.8)^{\circ}$	$(41.3 \pm 5.5)^{\circ}$	35°	$(8^{+21}_{-8})^{\circ}$		$(56 \pm 7)^{\circ}$	31°

First search of D_s^+ → $f_0(500)e^+\nu_e$, $f_0(500) \rightarrow \pi^+\pi^-$ ($M_{\pi^+\pi^-} < 0.45 \text{ GeV/c}^2$) $\gg \mathcal{B}(D_s^+ \to f_0(500)e^+ \nu_e, f_0(500) \to \pi^+\pi^-) < 3.3 \times 10^{-4}$

November/09/2024

Heng Ma@HNU

 $M_{\rm miss}^2$ (GeV²/c⁴)

0.2

Study of the decay $D^+ o f_0(500) \ell^+ u_\ell$

Heng Ma@HNU

arXiv: 2401.13225 (Accepted in PRD)
 > 2.93 fb⁻¹ data @ 3.773 GeV

	First	observation	of	D^+	$\rightarrow f_0(500)(\pi^+\pi^-$) $\mu^+ \nu_{\mu}$.
--	-------	-------------	----	-------	-----------------------------------	-----------------------

Signal mode	$N_{ m obs}$	$\mathcal{S}\left(\sigma ight)$	$\epsilon_{ m sig}~(\%)$	$\mathcal{B}_{ m sig}(imes 10^{-3})$
$f_0(500)\mu^+\nu_\mu$	209 ± 38	5.9	18.93 ± 0.13	0.72 ± 0.13
$ ho^0 \mu^+ u_\mu$	496 ± 38	> 10	19.86 ± 0.13	1.64 ± 0.13
$f_0(500)e^+\nu_e$	412 ± 43	> 10	44.76 ± 0.25	0.60 ± 0.06
$ ho^0 e^+ u_e$	1237 ± 47	> 10	44.12 ± 0.25	1.84 ± 0.07

Based Z series expansion for FF and Bugg form for $f_0(500)$ $\rightarrow f_+^{f_0}(0)|V_{cd}| = 0.0787 \pm 0.0060 \pm 0.0033$ $\rightarrow f_+^{f_0}(0) = 0.350 \pm 0.027 \pm 0.015$ ps: $|V_{cd}| = 0.22438 \pm 0.00044$ from SM global fit (PDG2022)

Study of the decay $D^+ o f_0(500) \ell^+ u_\ell$

arXiv: 2401.13225 (Accepted in PRD)
 > 2.93 fb⁻¹ data @ 3.773 GeV

	First	observation	of	D^+	$\rightarrow f_0(500)(\pi^+\pi^-$) $\mu^+ \nu_{\mu}$.
--	-------	-------------	----	-------	-----------------------------------	-----------------------

Signal mode	$N_{ m obs}$	$\mathcal{S}\left(\sigma ight)$	$\epsilon_{ m sig}~(\%)$	$\mathcal{B}_{ m sig}(imes 10^{-3})$
$f_0(500)\mu^+\nu_\mu$	209 ± 38	5.9	18.93 ± 0.13	0.72 ± 0.13
$ ho^0 \mu^+ u_\mu$	496 ± 38	> 10	19.86 ± 0.13	1.64 ± 0.13
$f_0(500)e^+\nu_e$	412 ± 43	> 10	44.76 ± 0.25	0.60 ± 0.06
$ ho^0 e^+ u_e$	1237 ± 47	> 10	44.12 ± 0.25	1.84 ± 0.07

First FF measurement of $D^+ \rightarrow f_0(500)(\pi^+\pi^-)\ell^+\nu_\ell$.

Based Z series expansion for FF and Bugg form for $f_0(500)$ $\rightarrow f_+^{f_0}(0)|V_{cd}| = 0.0787 \pm 0.0060 \pm 0.0033$ $\rightarrow f_+^{f_0}(0) = 0.350 \pm 0.027 \pm 0.015$

ps: $|V_{cd}| = 0.22438 \pm 0.00044$ from SM global fit (PDG2022) November/09/2024 Heng Ma@HNU

Physics motivation √

Data and analysis method \checkmark

B Results in review \checkmark

^{$\square 4$} Summary and prospect \checkmark

Summary and prospect

Summary

BESIII have performed high-precision measurements on charm meson semi-leptonic decays to vector mesons (ρ , ω , K^* , ϕ) and scalar mesons ($f_0(500)$, $f_0(980)$, $a_0(980)$) using the unique advantage of charm meson pair produced at threshold.

- > Absolute branching fraction measurements using double-tagging method
- Hadronic form factors measurements through amplitude analysis.
- > Can help to measure CKM matrix elements $|V_{cs}|/|V_{cd}|$
- Help to understand the nature of light scalar mesons
- > prospect
 - > BESIII has ~20 fb⁻¹ @3.773 GeV in total now.
 - More studies are on the way, especially the muon channels.
 - More jointed measurements of multiple channels

BESIII experiment

BEPCII collider

BESIII detector

