

第六届粒子物理天问论坛

Productions of DK and relevant three-body molecules in B decays

Reporter: Ming-Zhu Liu (刘明珠)

Collaborators: Li-Sheng Geng (耿立升) Tian-Wei Wu(吴天伟)

> **Based on:** Phys. Rev. D **109** (2024) 056014 In preparation

> > 2024-11-10

Spectra of two-body DK molecule and three-body $\overline{D}_s DK$ molecule

 \blacktriangleright Productions of *DK* and $\overline{D}_s DK$ molecules in B decays

Summary and Outlook

Exotic state $D_{s0}^*(2317)$

> Experimental measurements of D_{s0}^* (2317)

• Mass and width

 $D_{s0}^*(2317) = 2317.8 \pm 0.5 + \frac{i}{2} < 3.8$

Decay Channel

 $D_{s0}^{*-} \rightarrow D_s^- \pi^0$

> Large mass deviation

$D_{s0}^{*}(2317)$ is regarded as an exotic state

Molecular interpretation of D_{s0}^* (2317)

Mixture of molecular and other component

Guo, PoS LATTICE2022 (2023) 232

Molecular interpretation

- ✓ Mass and mass splitting
- ✓ Narrow width

$D_{s0}(2317)$	$I(J^P) = 0(0^+)$	DK
$D_{s1}(2460)$	$I(J^P) = 0(1^+)$	D^*K

ChPT Guo et al., Phys.Lett.B 641 (2006) 278-285
 Lattice QCD Liu et al., Phys.Rev.D 87 (2013) 014508

✓ Molecular component more than 70%

Lanzhou University	Ming-Zhu Liu 4
--------------------	----------------

Three-body hadronic molecule

Existence of three-body hadronic molecules

Hadron Physics

> Verify hadron-hadron interactions

Experimental search for three-body hadronic molecule potentially verify the hadron-hadron interaction

Liu et al., Arxiv: 2404.06399

Wu et al., Sci.Bull. 67 (2022) 1735-1738

Lanzhou University	Ming-Zhu Liu	5	
--------------------	--------------	---	--

Experimental signal of three-body hadronic molecule

> Two-body hadronic molecules

> Three-body hadronic molecules and the resonant states

Baryon-AntiBaryon

Lanzhou University

6

Experimental observation of three-body molecule

> A good candidate: $\overline{D}_s DK$ molecule

$$\overline{D}_s DK \quad \mathrm{I}(J^{PC}) = 0(0^{--})$$

58~65 MeV

✓ No mixture of conventional hadrons
 Contain exotic quantum number

- ✓ Two-body subsystem can not bind
 Suppressed by the OBE model or OZI rule
- ✓ Low mass with hidden charm/strange quantum number
 Can be observed at both e⁺e⁻ and pp collisions

Productions of *DK* and $\overline{D}_s DK$ molecules in B decays

Decay modes	PDG	BarBar
$B^+ \to \bar{D}^0 D_{s0}^{*+}(2317)$	$0.80^{+0.16}_{-0.13}$	$1.0\pm0.3\pm0.1$
$B^0 \to D^- D_{s0}^{*+}(2317)$	$1.06^{+0.16}_{-0.16}$	$1.8\pm0.4\pm0.3$
$B^+ \to \bar{D}^{*0} D_{s0}^{*+}(2317)$	$0.90\substack{+0.70\\-0.70}$	$0.9\pm0.6\pm0.2$
$B^0 \to D^{*-} D_{s0}^{*+}(2317)$	$1.50^{+0.60}_{-0.60}$	$1.5 \pm 0.4 \pm 0.2$
$B^+ \to \bar{D}^0 D_{s1}^+(2460)$	$3.1^{+1.0}_{-0.9}$	$2.7 \pm 0.7 \pm 0.5$
$B^0 \to D^- D_{s1}^+(2460)$	3.5 ± 1.1	$2.8\pm0.8\pm0.5$
$B^+ \to \bar{D}^{*0} D_{s1}^+ (2460)$	12.0 ± 3.0	$7.6 \pm 1.7 \pm 1.8$
$B^0 \to D^{*-} D_{s1}^+(2460)$	9.3 ± 2.2	$5.5 \pm 1.2 \pm 1.0$

Explain these branching fractions

> Explore the three-body molecule $\overline{D}_s DK$ in B decays

Spectra of two-body DK molecules and three-body $\overline{D}_s DK$ molecules

 \triangleright Productions of *DK* and $\overline{D}_s DK$ molecules in B decays

Summary and Outlook

Productions of D_{s0}^* (2317) and D_{s1} (2460) in B decays

Form factors

$$\left\langle \bar{D}^{*0} | (c\bar{b}) | B^{+} \right\rangle = \epsilon_{\alpha}^{*} \left\{ -g^{\mu\alpha} (m_{\bar{D}^{*0}} + m_{B^{+}}) A_{1} \left(q^{2}\right) + P^{\mu} P^{\alpha} \frac{A_{2} \left(q^{2}\right)}{m_{\bar{D}^{*0}} + m_{B^{+}}} + i \varepsilon^{\mu\alpha\beta\gamma} P_{\beta} q_{\gamma} \right. \\ \left. \frac{V \left(q^{2}\right)}{m_{\bar{D}^{*0}} + m_{B^{+}}} + q^{\mu} P^{\alpha} \left[\frac{m_{\bar{D}^{*0}} + m_{B^{+}}}{q^{2}} A_{1} \left(q^{2}\right) - \frac{m_{B^{+}} - m_{\bar{D}^{*0}}}{q^{2}} A_{2} \left(q^{2}\right) - \frac{2m_{\bar{D}^{*0}}}{q^{2}} A_{0} \left(q^{2}\right) \right] \right\}$$
$$\left\langle \bar{D}^{0} | (c\bar{b}) | B^{+} \right\rangle = \left[P^{\mu} - \frac{m_{B^{+}}^{2} - m_{\bar{D}^{0}}^{2}}{q^{2}} q_{\mu} \right] F_{1}(q^{2}) + \frac{m_{B^{+}}^{2} - m_{\bar{D}^{0}}^{2}}{q^{2}} q_{\mu} F_{0}(q^{2}) \right]$$

Decay constants

$$\left\langle D_{s0}^{*+}|(s\bar{c})|0\right\rangle \ = \ f_{D_{s0}^{*+}}p_{D_{s0}^{*+}}^{\mu} \left\langle D_{s1}^{+}|(s\bar{c})|0\right\rangle = m_{D_{s1}^{+}}f_{D_{s1}^{+}}\epsilon_{\mu}^{*}$$

Decay constants characterize the internal structure of exotic state

Calculating decay constants of D_{s0}^* (2317) and D_{s1} (2460)

Effective Lagrangian approach

W

W

$$\mathcal{L}_{VDK} = f_1^{DK}(0)V^{\mu}(D\partial_{\mu}K - \partial_{\mu}DK), \quad \mathcal{L}_{VD_s\eta} = f_1^{D_s\eta}(0)V^{\mu}(D_s\partial_{\mu}\eta - \partial_{\mu}D_s\eta)$$

Loop integral

 D_{s0}^{*}

 D_{s0}^{*}

$$\mathcal{A}_{a} = g_{D_{s0}^{*}DK} f_{1}^{DK}(0) \int \frac{d^{4}q}{(2\pi)^{4}} \frac{1}{k_{1}^{2} - m_{1}^{2}} \frac{1}{k_{2}^{2} - m_{2}^{2}} (k_{1}^{\mu} - k_{2}^{\mu}) \varepsilon_{\mu}(V), \qquad \langle D_{s0}^{*+} | (s\bar{c}) | 0 \rangle = f_{D_{s0}^{*+}} p_{D_{s0}^{*+}}^{\mu}$$

$$\mathcal{A}_{b} = g_{D_{s0}^{*}D_{s\eta}} f_{1}^{D_{s\eta}}(0) \int \frac{d^{4}q}{(2\pi)^{4}} \frac{1}{k_{1}^{2} - m_{1}^{2}} \frac{1}{k_{2}^{2} - m_{2}^{2}} (k_{1}^{\mu} - k_{2}^{\mu}) \varepsilon_{\mu}(V), \qquad \int f_{D_{s0}^{*}}^{m_{1}m_{2}} = g_{D_{s0}^{*}m_{1}m_{2}} f_{1}^{m_{1}m_{2}}(0) \frac{1}{16\pi^{2}} \int_{0}^{1} dx (2x - 1) ln \frac{\Delta^{2}}{\mu^{2}}$$

> Unknown parameters

Renormalization energy scale Dimensional Regularization Scheme

$$\int rac{d^4k_1}{(2\pi)^4} rac{k_1^\mu - k_2^\mu}{(k_1^2 - m_1^2)[(p-k_1)^2 - m_2^2]} \ = \ rac{p^\mu}{16\pi^2} \int_0^1 dx (2x-1) ln rac{\Delta^2}{\mu^2}$$

Coupling constants

Calculating decay constants of D_{s0}^* (2317) and D_{s1} (2460)

> Coupling constants

decay modes	Exp [34]	decay modes	Exp [34]
$D^+ \to \bar{K}^0 e^+ \nu_e$	8.72 ± 0.09	$D_s^+ \to \eta e^+ \nu_e$	2.32 ± 0.08
$D^+ \to \bar{K}^{*0} e^+ \nu_e$	5.40 ± 0.10	$D_s^+ \to \phi e^+ \nu_e$	2.39 ± 0.16
$D^0 \to K^- e^+ \nu_e$	3.549 ± 0.026		
$D^0 \rightarrow K^{*-} e^+ \nu_e$	2.15 ± 0.16		

$$\begin{split} & \overbrace{\vec{k}' |T|\vec{k}}^{p} = \left\langle \vec{k}' |T|\vec{k} \right\rangle + \int \frac{d^{3}\vec{q}}{(2\pi)^{3}} \left\langle \vec{k}' |V|\vec{q} \right\rangle G(s) \left\langle \vec{q} |T|\vec{k} \right\rangle \\ & V_{DK-D_{s}\eta}^{J^{P}=0^{+}} = \begin{pmatrix} -2C_{a} \sqrt{3}C_{a} \\ \sqrt{3}C_{a} & 0 \end{pmatrix} \quad V_{D^{*}K-D_{s}\eta}^{J^{P}=1^{+}} = \varepsilon(k_{1}) \cdot \varepsilon(k_{1}') \begin{pmatrix} -2C_{a} \sqrt{3}C_{a} \\ \sqrt{3}C_{a} & 0 \end{pmatrix} \\ & G(\sqrt{s})^{D_{s0}^{*}} = \frac{1}{16\pi^{2}} \int_{0}^{1} dx ln \frac{\Delta^{2}}{\mu^{2}}, \end{split}$$

$$G(\sqrt{s})^{D_{s1}} = \frac{1}{16\pi^2} \int_0^1 dx \, \left[ln \frac{\Delta^2}{\mu^2} - \frac{1}{2m_1^2} \Delta^2 (ln \frac{\Delta^2}{\mu^2} - 1) \right]$$

Similar regularization approach

Calculating decay constants of $D_{s0}^*(2317)$ and $D_{s1}(2460)$

> Strong decay constants of D_{s0}^* (2317) and D_{s1} (2460)

Couplings	$\mu = 1.00$	$\mu = 1.50$	$\mu = 2.00$
$g_{D_{s0}^*DK}$	11.75	11.92	11.95
$g_{D_{s0}^{*}D_{s}\eta}$	8.13	7.47	7.32
$g_{D_{s1}D^*K}$	12.06	12.16	12.15
$g_{D_{s1}D_s^*\eta}$	8.78	7.76	7.53

> Decay constants of D_{s0}^* (2317) and D_{s1} (2460)

Decay Constants	$\mu = 1000$	$\mu = 1500$	$\mu = 2000$
$f_{D_{s0}^*(2317)}$	59.36	58.74	58.59
$f_{D_{s1}(2460)}$	56.10	133.76	187.48

Decay constant of $D_{s0}^{*}(2317)$ is almost independent on the renormalization energy scale

Lanzhou University	Ming-Zhu Liu
--------------------	--------------

Production rates of D_{s0}^* (2317) and D_{s1} (2460) in B decays

> Branching fractions of $B \rightarrow \overline{D}^{(*)}D_{s0.S1}$ Decay Constants $f_{D_{s0}^*}$ $f_{D_{s1}}$ 10^{-3} QCD sum rule [896] 333 ± 20 345 ± 17 Ours Experiments [29] Decay modes Quark model [421] 110 233**70**% $B^+ \to \bar{D}^0 D_{s0}^{*+}(2317)$ $0.80^{+0.16}_{-0.13}$ 0.48 Salpeter method [897] 112 219 $B^+ \to \bar{D}^{*0} D_{s0}^{*+}(2317)$ $0.90\substack{+0.70\\-0.70}$ 0.39 $74.4^{+10.4}_{-10.6}$ covariant light-front quark model [898] 159^{+36}_{-32} $B^+ \to \bar{D}^0 D_{\rm s1}^+ (2460)$ 1.39 $3.1^{+1.0}_{-0.9}$ **50**% $B^+ \to \bar{D}^{*0} D_{s1}^+ (2460)$ 4.36 12.0 ± 3.0 Ours 115.71265.74

Decay constants of $D_{s0}^*(2317)$ and $D_{s1}(2460)$ as the bare states

> Production rates of D_{s0}^* (2317) and D_{s1} (2460) in b-flavored decays

	c	Decay modes	10 ⁻³	Ours				R_u^M	Ours	R_s^M	Ours
	Ī	$B_s^0 \to D_s^- D_{s0}^{*+}(231)$	7)	0.47	$\mathcal{B}(\Lambda_b o \Lambda)$	$(cM)/\mathcal{B}(B \to DM)$		$R_u^{D_s}$	1.22	$R_s^{D_s}$	1.94
$ar{b}$	W^+	$B_s^0 \to D_s^{*-} D_{s0}^{*+} (231)$	7)	0.27				$R_u^{D_s^*}$	2.44	$R_s^{D_s^*}$	2.35
+	<u>5</u>	$B_s^0 \to D_s^- D_{s1}^+ (2460)$	0)	1.18	$\mathcal{B}(\Xi_h o \Xi)$	$\Xi_c M)/\mathcal{B}(B_s \to D_s)$	M)	$R^{D_{s0}^*}$	1.46	$B^{D^*_{s0}}$	1 93
<u> </u>		$B_s^0 \to D_s^{*-} D_{s1}^+ (246)$	0)	4.11			,	DD .	1.40		2.20
								$R_u^{D_{s1}}$	3.12	$R_s^{D_{s1}}$	3.64
	8	Decay modes	Branchir	ng fractions	Decay modes	Branching fractions					
	<u>,</u> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	$\Lambda_b \to \Lambda_c D^*_{s0}(2317)$		0.70	$\Xi_b \to \Xi_c D^*_{s0}(2317)$	0.58					
b		$\Lambda_b \to \Lambda_c D_{s1}(2460)$		4.34	$\Xi_b \to \Xi_c D_{s1}(2460)$	10 ^{-3.29}					
d	d										

Production rates of D_{s0}^* and D_{s1} in baryons are larger than those in meson

	• •
Lanzhou Ur	NVArcity
	INCISICY

 \boldsymbol{u}

Ming-Zhu Liu

Productions of $\overline{D}_s DK$ molecule in B decays

> The topological diagrams for b-baryon decays

> The $\overline{D}_s DK$ molecule coupling to the $\overline{D}_s D_{s0}^*$ channel

Lanzhou University

Spectra of two-body DK molecules and three-body $\overline{D}_s DK$ molecules

 \blacktriangleright Productions of *DK* and $\overline{D}_s DK$ molecules in B decays

Summary and Outlook

Summary and outlook

- ➤ With predominant *DK* molecular component of D_{s0}^* (2317), we predict a three-body hadronic molecule $\overline{D}_s DK$, and their productions in B decays.
 - ✓ From the perspective of B decays, the $D_{s0}^*(2317)$ can not be explained as the pure hadronic molecule instead of mixture of molecule and other bare components.
 - ✓ We firstly calculated the production rates of three-body $\overline{D}_s DK$ molecule in B decay (10⁻⁶)

- > Available physical measurements to measure the three-body hadronic molecule
 - Decay modes of $\overline{D}_s DK$ molecule and the efficiency of experimental measurements
 - Estimating the events of productions of three-body hadronic molecules with the B cross sections in LHC or e+e- collisions

Thanks for your attention!

Backup

> Strong decay of $\overline{D}_s DK$ molecule

Lanzhou University

Ming-Zhu Liu

Backup

Productions of pentaquark states in b-baryon decays

> Comparison with the final state interactions

Decay modes	Ours	Triangle [56]	Exp [29]
$B^+ \to \bar{D}^0 D_{s0}^{*+}(2317)$	0.48	0.68	$0.80\substack{+0.16\\-0.13}$
$B^+ \to \bar{D}^{*0} D_{s0}^{*+}(2317)$	0.39	1.21	$0.90\substack{+0.70 \\ -0.70}$
$B^+ \to \bar{D}^0 D^+_{s1}(2460)$	1.39	1.26	$3.1^{+1.0}_{-0.9}$
$B^+ \to \bar{D}^{*0} D^+_{s1}(2460)$	4.36	3.07	12.0 ± 3.0

Liu et al., Phys. Rev. D 109 (2024) 056014

> An approach to extracting the decay constants of hadronic molecules

State	Decay constant(B decay)	Decay constant(decay to e^+e^-) [86]		
Y(4230)	$10.8\sim42.1$	$39.4\sim93.8$		
Y(4360)	$34.0 \sim 128.6$	$73.9\sim210.2$		
Liu et al., ArXiv:2409.06539				