

物理与电子科学学院

Spectroscopic and two-body strong decay properties of possible $Y_c K^{(*)}$ molecules

Outline

□ Background: From the molecular explanations to Tcs(2900) and X(2900) to possible Y_cK^(*) molecules

□ Mass spectrum of the $Y_c K^{(*)}(Y_c = \Lambda_c, \Sigma_c)$ molecules (Phys. Rev. D 108, 054011 (2023))

Two-body strong decay behaviors (Preliminary result)

D Summary

 $M(D_s\pi)$ well described by adding a $J^P = 0^+ T^a_{c\bar{s}0}(2900)$ in each channel

 $T^{a}_{c\bar{s}0}(2900)^{++}: M = 2921 \pm 17 \pm 19 \text{ MeV},$ $\Gamma = 137 \pm 32 \pm 14 \text{ MeV};$ $T^a_{c\bar{s}0}(2900)^0: M = 2892 \pm 14 \pm 15 \text{ MeV},$ $\Gamma = 119 \pm 26 \pm 12 \text{ MeV}.$

First tetraquarks composed of $[c\bar{s}u\bar{d}]$ and $[c\bar{s}\bar{u}d]$

- Isospin triplet $B^+ \rightarrow D^- D_s^+ \pi^+ + B^0 \rightarrow \overline{D}^0 D_s^+ \pi^-$ Significance: > 9σ Spin-parity: $J^P = 0^+$ Mass & width: $M \sim 2.9$ GeV; $\Gamma \sim 136$ MeV

Theoretical explanations

Compact open-charm pentaquark

1. $\overline{c}q - s\overline{q}$: Diquark(vector)-diquark(vector) picture, QCD sum, M=2.91 GeV

Chen W, Chen H-X, Liu X, Steele T G and Zhu S-L, Phys. Rev. D 95 114005

2. The chromo-magnetic interaction model, the mass of the predicted state with JP=0+ close to 2900 MeV

- Guo T, Li J, Zhao J and He L, *Phys. Rev.* D**105** 054018
- Cheng J-B, Li S-Y, Liu Y-R, Liu Y-N, Si Z-G and Yao T, Phys. Rev. D 101 114017

Hadronic molecular explanations

3. QCD sum rule: $D_s^* \rho$ molecular state

Agaev S S, Azizi K and Sundu H, J. Phys. G: Nucl. Part. Phys. 50 055002

Can there exist possible open-charm molecular pentaguarks?

> Diquark has the same color structure with the antiquark

- Indirect test of molecular state picture for Tcs(2900)
- \succ Understanding interactions between charmed baryon and strange meson 5

One-boson-exchange (OBE) model

Yukawa, Proc. Phys. Math. Soc. Japan 17, 48 (1935)

- 1935, Yukawa: pion-exchange and nucleon-nucleon interaction
- Nijimegen potential and Bonn potential: scalar meson σ exchange~two π exchange; vector meson- ρ/ω exchange~multi- π exchange

Interactions

The relevant Lagrangians --- the heavy quark limit and chiral symmetry

$$\mathcal{L}_{\mathcal{B}_{3}} = l_{B} \langle \bar{\mathcal{B}}_{\bar{3}} \sigma \mathcal{B}_{\bar{3}} \rangle + i \beta_{B} \langle \bar{\mathcal{B}}_{\bar{3}} v^{\mu} (\mathcal{V}_{\mu} - \rho_{\mu}) \mathcal{B}_{\bar{3}} \rangle,$$

$$\mathcal{L}_{\mathcal{B}_{6}} = l_{S} \langle \bar{\mathcal{S}}_{\mu} \sigma \mathcal{S}^{\mu} \rangle - \frac{3}{2} g_{1} \varepsilon^{\mu \nu \lambda \kappa} v_{\kappa} \langle \bar{\mathcal{S}}_{\mu} A_{\nu} \mathcal{S}_{\lambda} \rangle$$

$$+ i \beta_{S} \langle \bar{\mathcal{S}}_{\mu} v_{\alpha} \left(\mathcal{V}_{ab}^{\alpha} - \rho_{ab}^{\alpha} \right) \mathcal{S}^{\mu} \rangle + \lambda_{S} \langle \bar{\mathcal{S}}_{\mu} F^{\mu \nu}(\rho) \mathcal{S}_{\nu} \rangle$$

$$\mathcal{L}_{\mathcal{B}_{3}\mathcal{B}_{6}} = i g_{4} \langle \bar{\mathcal{S}}^{\mu} A_{\mu} \mathcal{B}_{\bar{3}} \rangle + i \lambda_{I} \varepsilon^{\mu \nu \lambda \kappa} v_{\mu} \langle \bar{\mathcal{S}}_{\nu} F_{\lambda \kappa} \mathcal{B}_{\bar{3}} \rangle + h.c..$$

Y.-R. Liu and M. Oka, Phys. Rev. D 85, 014015 (2012)

SU(3) symmetry $\mathcal{L}_{PPV} = \frac{ig}{2\sqrt{2}} \langle \partial^{\mu} P \left(P V_{\mu} - V_{\mu} P \right),$ $\mathcal{L}_{VVP} = \frac{g_{VVP}}{\sqrt{2}} \epsilon^{\mu\nu\alpha\beta} \left\langle \partial_{\mu} V_{\nu} \partial_{\alpha} V_{\beta} P \right\rangle,$ $\mathcal{L}_{VVV} = \frac{ig}{2\sqrt{2}} \langle \partial^{\mu} V^{\nu} \left(V_{\mu} V_{\nu} - V_{\nu} V_{\mu} \right) \rangle.$

Z.-w. Lin and C. M. Ko, Phys. Rev. C 62, 034903 (2000).

H. Nagahiro, L. Roca, and E. Oset, Eur. Phys. J. A 36, 73(2008)

Quark model: estimate all the coupling constants and phase factors

R. Chen, A. Hosaka, and X. Liu, Phys. Rev. D **97**, 036016 (2018). O. Kaymakcalan, S. Rajeev, and J. Schechter, Phys. Rev. D **30**, 594 (1984)

Numerical results: single channel

Reasonable loosely bound state solution

- \checkmark E: several to several tens MeV
- \checkmark A loosely bound state: $R_{MS} > R_A + R_B$

TABLE III: The Λ dependence of the obtained bound-state solutions (the binding energy *E* and the root-mean-square radius r_{RMS}) for the single $\Sigma_c K^*$ systems. Here, *E*, r_{RMS} , and Λ are in units of MeV, fm, and GeV, respectively.

$I(J^P)$	Λ	Ε	r _{RMS}	$I(J^P)$	Λ	E	r _{RMS}
1/2(1/2-)	1.70	-0.50	5.32	1/2(3/2-)	0.88	-0.25	6.06
	2.00	-3.32	2.64		0.98	-3.32	2.58
	2.30	-8.31	1.81		1.08	-10.72	1.59
	2.60	-15.30	1.42		1.18	-23.27	1.15
3/2(1/2-)	1.28	-0.11	6.24	3/2(3/2-)			
	1.31	-2.42	2.50				
\checkmark	1.34	-7.78	1.43	X			
-	1.37	-16.71	1.00				

 ΛcK^* and Σ_cK systems

- □ No bound state in 0.8 ≤Λ ≤ 5.0 GeV
- The OBE effective potentials for the AcK system is not strong enough to bind a bound state

$\Sigma_c K^*$ systems

 OBE effective potentials: σ, π, η, ρ, ω – exchanges allowed;
 3/2(3/2-): no bound state;
 Remaining three systems: good molecular candidates; Λ ~1.00 GeV, R~fm, E>-20MeV

Coupled channel effects case

TABLE I: The bound state solutions (the binding energy *E*, the root-mean-square radius r_{RMS} , and the probabilities $P_i(\%)$ for all the discussed channels) for the coupled $\Lambda_c K^* / \Sigma_c K^*$ systems with $I(J^P) = 1/2(1/2^-)$ and $1/2(3/2^-)$. Here, *E*, r_{RMS} , and Λ are in units of MeV, fm, and GeV, respectively. The dominant channels are labeled in a bold manner.

$I(J^P)$	Λ	E	r _{RMS}	$\Lambda_c K^*(^2S_{1/2})$	$\Lambda_c K^*(^4D_{1/2})$	$\Sigma_c K^*(^2S_{1/2})$	$\Sigma_c K^*(^4D_{1/2})$		
$1/2(1/2^{-})$	1.56	-0.14	6.11	98.82	~ 0	1.14	0.04	Four	channels
	1.58	-2.14	2.62	97.11	0.01	2.82	0.06	1 Oui	channels
\checkmark	1.60	-6.02	1.56	95.12	0.02	4.79	0.07	Circ	
	1.62	-11.57	1.12	93.18	0.03	6.72	0.07	Six channels	
$I(J^P)$	Λ	Ε	r _{RMS}	$\Lambda_c K^*({}^4S_{3/2})$	$\Lambda_c K^*(^2D_{3/2})$	$\Lambda_c K^*(^4D_{3/2})$	$\Sigma_c K^*(^4S_{3/2})$	$\Sigma_c K^* (^2D_3$	$\Sigma_c K^*(^4D_{3/2})$
$1/2(3/2^{-})$	1.34	-0.07	6.35	94.23	0.03	0.11	4.89	0.22	0.52
	1.36	-3.06	2.07	84.54	0.08	0.28	13.36	0.53	1.20
\checkmark	1.38	-8.93	1.18	75.92	0.12	0.42	21.07	0.76	1.71
-	1 10	16.00	-	(0.10	0.14	0.50	07.07	0.01	2.05

1/2(1/2-)

AcK: no bound state

AcK*: $\Lambda \sim 1.60$ GeV, reasonable loosely bound state solutions(r~fm, E~MeV), S-wave AcK* channel is the dominant channel; a good hadronic molecular candidate

1/2(3/2-)

AcK*: $\Lambda \sim 1.35$ GeV, reasonable loosely bound state solutions(r~fm, E~MeV), S-wave AcK* channel is the dominant channel; a good hadronic ₉ molecular candidate

TABLE II: The bound state solutions (the binding energy *E*, the root-mean-square radius r_{RMS} , and the probabilities $P_i(\%)$ for all the discussed channels) for the single $\Sigma_c K$ and the coupled $\Sigma_c K/\Lambda_c K^*/\Sigma_c K^*$ systems with $I(J^P) = 1/2(1/2^-)$ and $3/2(1/2^-)$. Here, *E*, r_{RMS} , and Λ are in units of MeV, fm, and GeV, respectively. The dominant channels are labeled in a bold manner.

	Single channel				Coupled channel						
$I(J^P)$	Λ	E	r _{RMS}	Λ	E	r _{RMS}	$\Sigma_c K(^2 S_{1/2})$	$\Lambda_c K^*(^2S_{1/2})$	$\Lambda_c K^*(^4D_{1/2})$	$\Sigma_c K^*(^2S_{1/2})$	$\Sigma_c K^*(^4D_{1/2})$
1/2(1/2-)	2.00	-0.94	4.78	0.90	-0.36	6.14	98.85	0.61	0.47	0.01	0.06
1	2.20	-4.80	2.44	0.95	-3.28	3.04	97.61	1.34	Five2cho	innels ₂	0.12
\checkmark	2.40	-10.96	1.68	1.00	-9.27	1.91	96.11	2.25	1.42	0.04	0.18
•	2.60	-18.92	1.31	1.05	-18.44	1.42	94.60	3.18	1.92	0.06	0.24

 Loosely bound state with I=1/2: Λ ~1.00 GeV; prime hadronic molecular candidate; S-wave Σ_cK dominant channel; coupled channel effects very important

 Loosely bound state with I=3/2: A ~1.00 GeV; bound state solutions are very sensitive with cutoff; not a good molecular candidate

Two-body strong decay behaviors

In the rest frame of the molecular state, two-body decay width can be expressed as

$$d\Gamma = \frac{1}{2J+1} \frac{|\mathbf{p}|}{32\pi^2 m_i^2} |\mathcal{M}(i \to f_1 + f_2)|^2 d\Omega$$
¹¹

Decay channels and exchanged particles

	$\Sigma_c K$	$\Lambda_c K^*$	$\Sigma_c K^*$	
D_sN	Σ, D^*	$\Lambda, D^{(*)}$	$\Sigma, D^{(*)}$	
D_s^*N		$\Lambda, D^{(*)}$	$\Sigma, D^{(*)}$	S-wave
$\Lambda_c K$	$ ho, \Xi_c^{(\prime)}$	$\eta, \omega, \Xi_c^{(\prime)}$	$\pi, ho,\Xi_c^{\prime\prime)}$	
$\Lambda_c K^*$			$\pi, ho,\Xi_c^{\prime\prime)}$	
$\Sigma_c K$		$\pi, ho,\Xi_c^{(\prime)}$	$\pi,\eta, ho,\omega,\Xi_c^{(\prime)}$	
$\Sigma_c^* K$	•••		$\pi,\eta, ho,\omega,\Xi_c^{(\prime)}$	

Effective Lagrangians in SU(4) symmetry

$$\mathcal{L} = \mathcal{L}_{PPV} + \mathcal{L}_{VVP} + \mathcal{L}_{VVV}$$
$$= \frac{ig}{2\sqrt{2}} \langle \partial^{\mu} P \left(P V_{\mu} - V_{\mu} P \right) + \frac{g_{VVP}}{\sqrt{2}} \epsilon^{\mu\nu\alpha\beta} \left\langle \partial_{\mu} V_{\nu} \partial_{\alpha} V_{\beta} P \right\rangle + \frac{ig}{2\sqrt{2}} \langle \partial^{\mu} V^{\nu} \left(V_{\mu} V_{\nu} - V_{\nu} V_{\mu} \right) \rangle.$$

Phys. Rev. C 65, 015203 (2002), arXiv:2402.10594, Phys. Rev. C 62, 034903 (2000), Eur. Phys. J. A 36, 73 (2008),

Numerical results

 $\Sigma_c K / \Lambda_c K^* / \Sigma_c K^* 1 / 2 (1 / 2^-)$

 Total decay width: in the order of 1 MeV.
 Dominant decay mode: DsN.
 Both of the mesons and baryons exchanges can be important.
 The coupled channel

effects play an

important role.

Summary

1. $Y_c K^{(*)}(Y_c = \Lambda_c, \Sigma_c)$ interactions: Using the OBE model, considering both of the S -D wave mixing effects and the coupled channel effects, predicting several possible molecular candidates

 $I(J^P)=1/2(1/2^-)$ $1/2(3/2^-)$ $3/2(1/2^-)$

2. Exploring their two-body strong decay behaviors using the effective Lagrangians method, input the obtained wave functions

States	Σ _c K [1/2(1/2-)]	Λ _c K* (1/2-)	Λ _c K* (3/2-)	Σ _c K* [1/2(1/2-)]	Σ _c K* [1/2(3/2-)]	Σ _c K* [3/2(1/2-)]
Width (MeV)	1	10	0.1	60	5	40
Dominant modes	DsN	DsN	Ds*N	$\Sigma_c K$	ΛςΚ*	Σ _c K

欢迎大家参加第十届XYZ研讨会 相聚长沙,赏自然山水,尝特色美食

2025/4/11----4/15

https://indico.ihep.ac.cn/event/23881/

