第六届粒子物理天问论坛

Light single-gluon hybrid states with various exotic quantum numbers

Wei-Han Tan

Southeast University

Collaborator:Niu Su, Hua-Xing Chen,Shi-Lin Zhu,Wei Chen

- Method of the QCD sum rules
- Numerical analyses
- Decay behavior
- Summary

- Method of the QCD sum rules
- Numerical analyses
- Decay behavior
- Summary

• Traditional quark model

• Exotic hadron: hybrid state, glueball, tetraquark, etc.

• Exotic spin-parity quantum numbers

FIG. 3. The distributions of the unnormalized moments $\langle Y_L^0 \rangle$ (L = 0, 1, 2, and 4) for $J/\psi \rightarrow \gamma \eta \eta'$ as functions of the $\eta \eta'$ mass. Black dots with error bars represent the background-subtracted data weighted with angular moments; the red solid lines represent the baseline fit projections; and the blue dotted lines represent the projections from a fit excluding the η_1 component.

M. Ablikim, et al., Observation of an Isoscalar Resonance with Exotic $J^{PC} = 1^{-+}$ Quantum Numbers in $J/\psi \rightarrow \gamma\eta\eta'$, Phys. Rev. Lett. 129 (19) (2022) 192002. arXiv:2202.00621, doi:10.1103/PhysRevLett.129.192002.

$$\eta_1(1855)$$
 : $M = 1855 \pm 9^{+6}_{-1} \text{ MeV}/c^2$,
 $\Gamma = 188 \pm 18^{+3}_{-8} \text{ MeV}$.

$$\eta_1(1855)$$
 : $M = 1855 \pm 9^{+6}_{-1} \text{ MeV}/c^2$,
 $\Gamma = 188 \pm 18^{+3}_{-8} \text{ MeV}$.

$\pi_1(1400)$	$M = 1354 \pm 25 \text{ MeV},$	
	$\Gamma = 330 \pm 35 \mathrm{MeV};$	
$\pi_1(1600)$	$M = 1661^{+15}_{-11} \text{ MeV},$	
1997 - Ar 1997 - 1995	$\Gamma = 240 \pm 50 \mathrm{MeV};$	
$\pi_1(2015)$	$M = 2014 \pm 20 \pm 16$ M	eV,
unosite surris	$\Gamma = 230 \pm 32 \pm 73 \text{ MeV}$	Τ.

 $m_{\pi_1(1400)} = 1351 \pm 30$ MeV

H.-C. Kim, Y. Kim, JHEP 01 (2009) 034. arXiv:0811. 0645, doi:10.1088/1126-6708/2009/01/034.

 $m_{\pi_1(1600)} = 1980 \pm 21 \text{MeV}$

Juzheng Liang, Siyang Chen, Ying Chen, Chunjiang Shi, Wei Sun (2024). arXiv:hep-lat/2409.14410v1.

 $m_{1^{-+}} = 2110 \text{MeV}$

C. McNeile, C. W. Bernard, T. A. DeGrand, C. E. DeTar, S. A. Gottlieb, U. M. Heller, J. Hetrick, R. Sugar, D. Toussaint, Nucl. Phys. B Proc. Suppl. 73 (1999) 264–266. arXiv:hep-lat/ 9809087, doi:10.1016/S0920-5632(99)85043-9.

• The QCD sum rule method has been widely applied to study the $J^{PC} = 1^{-+}$ hybrid states.

Nucl. Phys. B 248 (1984) 1–18.Phys.	Lett. B 485 (2000) 145–150
Eur.Phys. J. C 8 (1999) 465-471.	Z.Phys. C 34 (1987) 347.
Phys. Rev. D 76(2007) 094001.	Nucl. Phys. B 196 (1982) 125-146
Phys. Lett.B 675 (2009) 319–325.	

• This method has also been applied to study the $J^{PC} = 0^{+-}$ and 2^{+-} hybrid states.

Phys. Rev. D 98 (9) (2018) 096020. Phys. Rev. D 108(2023), 114010

• The light single-gluon hybrid states with other quantum numbers have not been well studied in the literature. Accordingly, in this paper we shall systematically investigate the single-gluon hybrid states with various (exotic) quantum numbers through the QCD sum rule method.

Method of the QCD sum rules

- Numerical analyses
- Decay behavior

Summary

QCD sum rules

• In QCD sum rule analyses, we consider two-point correlation functions:

$$\Pi_{1^{-+}}^{\mu\nu}(q^2)$$
(39)
$$\equiv i \int d^4x e^{iqx} \langle 0 | \mathbf{T}[J_{1^{-+}}^{\mu}(x) J_{1^{-+}}^{\nu\dagger}(0)] | 0 \rangle$$

$$= (g^{\mu\nu} - q^{\mu}q^{\nu}/q^2) \Pi_{1^{-+}}(q^2) + (q^{\mu}q^{\nu}/q^2) \Pi_{0^{++}}(q^2).$$

where J is the current which can couple to hadronic states.

• We use the dispersion relation to express $\prod_{1^{-+}}(q^2)$ as

$$\prod_{\substack{a \in \mathbf{x} \neq \mathbf{x} \\ q^2}} \prod_{i=1}^{\infty} \prod_{1^{-+}} (q^2) = \int_{s_{<}}^{\infty} \frac{\rho_{1^{-+}}(s)}{s - q^2 - i\varepsilon} ds \,,$$

where $\rho_1^{-+}(s) \equiv \text{Im} \prod_{1^{-+}}(s)/\pi$ is the spectral density, and $s_{<} = 4m_q^2$ is the physical threshold.

QCD sum rules

• At the hadron level, one pole dominance + continuum contribution:

$$\rho_{1^{-+}}^{\text{phen}}(s) \times (g^{\mu\nu} - q^{\mu}q^{\nu}/q^{2})$$

$$\equiv \sum_{n} \delta(s - M_{n}^{2}) \langle 0|J_{1^{-+}}^{\mu}|n\rangle \langle n|J_{1^{-+}}^{\nu\dagger}|0\rangle$$

$$= f_{1^{-+}}^{2} \delta(s - M_{1^{-+}}^{2}) \times (g^{\mu\nu} - q^{\mu}q^{\nu}/q^{2}) + \text{continuum}.$$
(42)

• At the quark-gluon level, operator product expansion (OPE). And Borel transformation at both the hadron and quark-gluon levels.

$$\Pi_{1^{-+}}(s_0, M_B^2) \equiv f_{1^{-+}}^2 e^{-M_{1^{-+}}^2/M_B^2}$$
$$= \int_{s_{<}}^{s_0} e^{-s/M_B^2} \rho_{1^{-+}}^{\text{OPE}}(s) ds,$$

Light single-gluon hybrid states with various exotic quantum numbers

QCD sum rules

$$M_{1^{-+}}^{2}(s_{0}, M_{B}) = \frac{\int_{s_{<}}^{s_{0}} e^{-s/M_{B}^{2}} s \rho_{1^{-+}}^{\text{OPE}}(s) ds}{\int_{s_{<}}^{s_{0}} e^{-s/M_{B}^{2}} \rho_{1^{-+}}^{\text{OPE}}(s) ds}, \quad (44)$$

$$f_{1^{-+}}^{2}(s_{0}, M_{B}) = \Pi_{1^{-+}}(s_{0}, M_{B}^{2}) \times e^{M_{1^{-+}}^{2}/M_{B}^{2}}. \quad (45)$$

• Two parameters: M_B , s_0

- Criteria:
- 1. Positivity of spectral density
- 2. Convergence of OPE
- 3. Sufficient amount of pole contribution
- 4. The dependence of mass on parameters M_B , s_0

- Method of the QCD sum rules
- Numerical analyses
- Decay behavior

Summary

 $J_{1-+}^{\mu} = \bar{q}_a \lambda_n^{ab} \gamma_\beta q_b \ g_s G_n^{\mu\beta} ,$ Interpolating currents: The OPE of current $J_{1^{-+}}^{\mu}$

$$\begin{split} \Pi_{1^{-+}}^{\mu} \left(M_B^2, s_0 \right) &= \int_{4m_s^2}^{s_0} \left(\frac{s^3 \alpha_s}{60\pi^3} - \frac{m_s^2 s^2 \alpha_s}{3\pi^3} + s \left(\frac{\langle \alpha_s GG \rangle}{36\pi^2} + \frac{13 \langle \alpha_s GG \rangle \alpha_s}{432\pi^3} + \frac{8m_s \langle \bar{s}s \rangle \alpha_s}{9\pi} \right) \\ &+ \frac{\langle g_s^3 G^3 \rangle}{32\pi^2} - \frac{3 \langle \alpha_s GG \rangle m_s^2 \alpha_s}{64\pi^3} - \frac{3m_s \langle g_s \bar{s}\sigma Gs \rangle \alpha_s}{4\pi} \right) \times e^{-s/M_B^2} ds \\ &+ \left(\frac{\langle \alpha_s GG \rangle^2}{3456\pi^2} - \frac{\langle g_s^3 G^3 \rangle m_s^2}{16\pi^2} - \frac{2}{9} \langle \alpha_s GG \rangle m_s \langle \bar{s}s \rangle + \frac{11}{9} \pi \langle \bar{s}s \rangle \langle g_s \bar{s}\sigma Gs \rangle \alpha_s \right), \end{split}$$

The OPE with the quark-gluon content $\bar{q}qg$ (q = u/d) can be easily derived by replacing $m_s \rightarrow 0$, $\langle \bar{s}s \rangle \rightarrow \langle \bar{q}q \rangle$, and $\langle g\bar{s}\sigma Gs \rangle$ $\rightarrow \langle g\bar{q}\sigma Gq \rangle$.

Numerical analyses

• Convergence of OPE

$$\begin{aligned} \operatorname{CVG}_A &\equiv \left| \frac{\Pi^{g_s^{n=4}}(\infty, M_B^2)}{\Pi(\infty, M_B^2)} \right| \leq 5\%, \\ \operatorname{CVG}_B &\equiv \left| \frac{\Pi^{\mathrm{D}=6+8}(\infty, M_B^2)}{\Pi(\infty, M_B^2)} \right| \leq 10\%. \end{aligned}$$

Sufficient amout of pole contribution

$$\mathrm{PC} \equiv \left| \frac{\Pi(s_0, M_B^2)}{\Pi(\infty, M_B^2)} \right| \ge 40\% \,.$$

$$2.26 \text{GeV}^2 \le M_B^2 \le 2.54 \text{GeV}^2$$

Note that this Borel window is not so wide, and it may indicate that the understanding of this state as a particle has limitations

Numerical analyses

The dependence of mass on parameters

FIG. 4: Mass of the single-gluon hybrid state $|\bar{s}sg;1^{-+}\rangle$ with respect to the threshold value s_0 (left) and the Borel mass M_B (right). In the left panel the dotted, solid, and dashed curves are obtained by setting $M_B^2 = 2.26 \text{ GeV}^2$, 2.40 GeV², and 2.54 GeV², respectively. In the right panel the dotted, solid, and dashed curves are obtained by setting $s_0 = 5.2 \text{ GeV}^2$, 6.2 GeV², and 7.2 GeV², respectively. These curves are obtained using the spectral density $\rho_{1^{-+}}^{\bar{s}sg}(s)$ extracted from the current $J_{1^{-+}}^{\mu}$ with the quark-gluon content $\bar{s}sg$.

$$M_{|\bar{s}sg;0^{+}1^{-+}\rangle} = 1.84^{+0.14}_{-0.15} \,\mathrm{GeV}$$

Mass extracted from currents of $\bar{s}sg$

State [IPC] Current	$min [C_{2}V^{2}]$	Working	Working Regions		Mass [CaV]	Deserv Constant	
State [J]	State [J] Current	s ₀ [Gev]	$M_B^2 \; [{ m GeV^2}]$	$s_0 \; [{\rm GeV^2}]$	Pole [70]	mass [GeV]	Decay Constant
$ \bar{s}sg; 1^{}\rangle$	$J_{1^{}}^{lphaeta}$	4.3	2.07-2.80	6.5	40-63	$1.94^{+0.20}_{-0.21}$	$0.054^{+0.013}_{-0.016}~{\rm GeV^3}$
$ \bar{s}sg;1^{+-}\rangle$	$ ilde{J}_{1+-}^{lphaeta}$	16.2	3.60 - 5.40	20.0	40-65	$4.06^{+0.26}_{-0.16}$	$0.071^{+0.019}_{-0.020}~{\rm GeV^3}$
$ \bar{s}sg;1^{+-}\rangle$	$J_{1+-}^{lphaeta}$	5.9	2.54-2.72	6.5	40-45	$2.01^{+0.17}_{-0.20}$	$0.050^{+0.005}_{-0.006} \text{ GeV}^3$
$ \bar{s}sg; 1^{}\rangle$	$\tilde{J}_{1^{}}^{lphaeta}$	16.9	3.73-5.30	20.0	40-61	$4.12_{-0.13}^{+0.26}$	$0.070^{+0.019}_{-0.020}~{\rm GeV^3}$
$ \bar{s}sg;0^{++}\rangle$	$J_{1^{-+}}^{\mu ightarrow 0}$	20.7	5.18 - 7.35	26.0	40-63	$4.50^{+0.23}_{-0.22}$	$0.136^{+0.030}_{-0.034} \ {\rm GeV}^3$
$ \bar{s}sg;0^{-+}\rangle$	$\tilde{J}^{\mu \to 0}_{1^{++}}$	7.2	3.45-4.08	9.5	40-53	$2.26^{+0.21}_{-0.24}$	$0.107^{+0.007}_{-0.005}~{\rm GeV^3}$
$ \bar{s}sg;0^{}\rangle$	$J_{1+-}^{\mu ightarrow 0}$	21.6	5.36 - 7.23	26.0	40-59	$4.57_{-0.19}^{+0.22}$	$0.134^{+0.031}_{-0.035} \ {\rm GeV}^3$
$ \bar{s}sg;0^{+-}\rangle$	$\tilde{J}^{\mu \to 0}_{1}$	7.5	3.41-3.98	9.5	40-52	$2.30^{+0.20}_{-0.24}$	$0.101^{+0.007}_{-0.006}~{\rm GeV^3}$
$ \bar{s}sg;1^{-+}\rangle$	$J_{1^{-+}}^{\mu}$	5.1	2.26 - 2.54	6.2	40-49	$1.84_{-0.15}^{+0.14}$	$0.300^{+0.063}_{-0.058}~{\rm GeV^4}$
$ \bar{s}sg;1^{++}\rangle$	$ ilde{J}^{\mu}_{1^{++}}$	14.1	3.64-4.80	17.0	40–5 8	$3.65_{-0.17}^{+0.17}$	$1.678^{+0.530}_{-0.502} \text{ GeV}^4$
$ \bar{s}sg;1^{+-}\rangle$	J^{μ}_{1+-}	3.9	1.85 - 2.43	6.0	40–6 2	$1.82_{-0.15}^{+0.13}$	$0.278^{+0.059}_{-0.056}~{\rm GeV^4}$
$ \bar{s}sg;1^{}\rangle$	$ ilde{J}^{\mu}_{1}$	13.8	3.50-4.80	17.0	40-61	$3.64_{-0.17}^{+0.17}$	$1.662^{+0.526}_{-0.498} \text{ GeV}^4$

Numerical analyses

State [IPC] Current	$min [C = V^2]$	Working Regions		Dolo [07]	Mass [CaV]	Dearer Constant	
State [J]	Current	s ₀ [Gev]	$M_B^2 \; [{ m GeV}^2]$	$s_0 \; [{ m GeV}^2]$		Mass [Gev]	Decay Constant
$ \bar{s}sg;0^{++}\rangle$	$J_{0^{++}}$	11.5	3.53-4.33	14.0	40-55	$3.11^{+0.22}_{-0.27}$	$3.535^{+1.338}_{-1.242} \text{ GeV}^4$
$ \bar{s}sg;0^{-+}\rangle$	$J_{0^{-+}}$	11.3	3.51 - 4.36	14.0	40-56	$3.08^{+0.23}_{-0.28}$	$3.509^{+1.328}_{-1.233} \text{ GeV}^4$
$ \bar{s}sg;1^{++}\rangle$	$J_{1^{++}}^{\alpha\beta}$	6.6	1.95-2.27	7.5	40-51	$2.34_{-0.16}^{+0.14}$	$0.061^{+0.012}_{-0.014} \ {\rm GeV}^3$
$ \bar{s}sg;1^{-+}\rangle$	$\tilde{J}_{1^{-+}}^{\alpha\beta}$	5.5	1.82-2.25	7.0	40-57	$2.08^{+0.18}_{-0.24}$	$0.061^{+0.010}_{-0.010}~{\rm GeV^3}$
$ \bar{s}sg;1^{-+}\rangle$	$J_{1^{-+}}^{\alpha\beta}$	5.5	1.82-2.25	7.0	40-57	$2.08^{+0.18}_{-0.24}$	$0.061^{+0.010}_{-0.010}~{\rm GeV^3}$
$ \bar{s}sg;1^{++}\rangle$	$\tilde{J}^{\alpha\beta}_{1^{++}}$	6.6	1.95-2.27	7.5	40-51	$2.34_{-0.16}^{+0.14}$	$0.061^{+0.012}_{-0.014}~{\rm GeV^3}$
$ \bar{s}sg;2^{++}\rangle$	$J_{2^{++}}^{\alpha_1\beta_1,\alpha_2\beta_2}$	9.2	3.22-3.60	10.5	40-49	$2.59^{+0.19}_{-0.23}$	
$ \bar{s}sg;2^{-+}\rangle$	$ ilde{J}_{2^{-+}}^{lpha_1eta_1,lpha_2eta_2}$	13.4	2.55-4.29	16.0	40-66	$3.72_{-0.13}^{+0.72}$	
$ \bar{s}sg;2^{-+}\rangle$	$J_{2^{-+}}^{\alpha_1\beta_1,\alpha_2\beta_2}$	8.1	3.04-3.72	10.5	40-56	$2.51^{+0.20}_{-0.24}$	_
$ \bar{s}sg;2^{++}\rangle$	$\tilde{J}_{2^{++}}^{\alpha_1\beta_1,\alpha_2\beta_2}$	11.8	2.36-4.47	16.0	40-78	$3.54_{-0.16}^{+0.42}$	

$$M_{|\bar{s}sg;0^{+}1^{-+}\rangle} = 1.84^{+0.14}_{-0.15} \text{ GeV},$$

$$f_{|\bar{s}sg;0^{+}1^{-+}\rangle} = 0.300^{+0.063}_{-0.058} \text{ GeV}^{4}$$

Mass extracted from currents of $\overline{q}qg(q = u/d)$

State [PC] Current	min [CoV2]	Working Regions		Dolo [07]	Maga [CaV]	Decor Constant	
State [J]	Current	s ₀ [Gev]	$M_B^2 \; [{ m GeV}^2]$	$s_0 \; [{ m GeV}^2]$		Mass [Gev]	Decay Constant
$ \bar{q}qg;1^{}\rangle$	$J_{1}^{\alpha\beta}$	4.2	2.03-2.48	5.5	40-54	$1.80^{+0.13}_{-0.16}$	$0.051^{+0.004}_{-0.004}~{\rm GeV^3}$
$ \bar{q}qg;1^{+-}\rangle$	$\tilde{J}^{\alpha\beta}_{1+-}$	16.2	3.61 - 4.58	18.0	40-53	$4.05_{-0.12}^{+0.24}$	$0.063^{+0.020}_{-0.020} \ {\rm GeV}^3$
$ \bar{q}qg;1^{+-}\rangle$	$J_{1^{+-}}^{\alpha\beta}$	5.0	2.29-2.45	5.5	40-45	$1.84_{-0.14}^{+0.12}$	$0.049^{+0.004}_{-0.004}~{\rm GeV^3}$
$ \bar{q}qg;1^{}\rangle$	$\tilde{J}_{1}^{\alpha\beta}$	16.3	3.52 - 4.56	18.0	40-53	$4.09^{+0.29}_{-0.14}$	$0.064^{+0.021}_{-0.020}~{\rm GeV^3}$
$ \bar{q}qg;0^{++}\rangle$	$J_{1^{-+}}^{\mu ightarrow 0}$	20.6	5.11-6.59	24.0	40-56	$4.45_{-0.17}^{+0.22}$	$0.124^{+0.032}_{-0.036} \ {\rm GeV}^3$
$ \bar{q}qg;0^{-+}\rangle$	$\tilde{J}_{1++}^{\mu \to 0}$	7.7	3.58 - 3.81	8.5	40-45	$2.14_{-0.19}^{+0.17}$	$0.105^{+0.005}_{-0.004}~{\rm GeV^3}$
$ \bar{q}qg;0^{}\rangle$	$J_{1+-}^{\mu \to 0}$	21.6	5.48-6.52	24.0	40-50	$4.49_{-0.14}^{+0.21}$	$0.123^{+0.032}_{-0.037} \text{ GeV}^3$
$ \bar{q}qg;0^{+-}\rangle$	$\tilde{J}_{1}^{\mu \to 0}$	7.1	3.32-3.73	8.5	40-49	$2.16\substack{+0.16\\-0.19}$	$0.100^{+0.005}_{-0.005}~{\rm GeV^3}$
$ \bar{q}qg;1^{-+}\rangle$	$J^{\mu}_{1^{-+}}$	4.8	2. <mark>19</mark> –2.28	5.2	40-43	$1.67\substack{+0.15\\-0.17}$	$0.243^{+0.057}_{-0.052} \text{ GeV}^4$
$ \bar{q}qg;1^{++}\rangle$	$\tilde{J}^{\mu}_{1^{++}}$	13.8	3.59-4.10	15.0	40-48	$3.54_{-0.12}^{+0.16}$	$1.370^{+0.494}_{-0.450} \text{ GeV}^4$
$ \bar{q}qg;1^{+-}\rangle$	$J_{1^{+-}}^{\mu}$	4.6	2.10-2.27	5.2	40-46	$1.68^{+0.14}_{-0.16}$	$0.242^{+0.055}_{-0.051} \text{ GeV}^4$
$ \bar{q}qg;1^{}\rangle$	$ ilde{J}^{\mu}_{1^{-}-}$	13.7	3.57-4.10	15.0	40-49	$3.53_{-0.12}^{+0.16}$	$1.366^{+0.493}_{-0.450} \text{ GeV}^4$

Numerical analyses

State [IPC] Current	$min [C_{2}V^{2}]$	Working Regions		Dolo [07]	Mass [CoV]	Desey Constant	
State [J	Current	s ₀ [Gev]	$M_B^2 \; [{ m GeV}^2]$	$s_0 \; [{ m GeV}^2]$	Fole [70]	Mass [Gev]	Decay Constant
$ \bar{q}qg;0^{++}\rangle$	$J_{0^{++}}$	11.1	3.48-3.91	12.5	40-49	$2.94^{+0.20}_{-0.25}$	$2.893^{+1.029}_{-0.948} \text{ GeV}^4$
$ \bar{q}qg;0^{-+}\rangle$	$J_{0^{-+}}$	11.1	3.47-3.92	12.5	40-49	$2.93_{-0.25}^{+0.20}$	$2.882^{+1.026}_{-0.945} \text{ GeV}^4$
$ \bar{q}qg;1^{++}\rangle$	$J_{1^{++}}^{\alpha\beta}$	5.8	1.84 - 2.06	6.5	40-48	$2.11_{-0.21}^{+0.17}$	$0.056^{+0.012}_{-0.013} \ { m GeV}^3$
$ \bar{q}qg;1^{-+}\rangle$	$ ilde{J}^{lphaeta}_{1^{-+}}$	5.5	1.81-2.00	6.2	40-48	$2.00^{+0.13}_{-0.16}$	$0.055^{+0.007}_{-0.008} \ {\rm GeV}^3$
$ \bar{q}qg;1^{-+}\rangle$	$J_{1^{-+}}^{lphaeta}$	5.5	1.81-2.00	6.2	40-48	$2.00^{+0.13}_{-0.16}$	$0.055^{+0.007}_{-0.008}~{\rm GeV^3}$
$ \bar{q}qg;1^{++}\rangle$	$\tilde{J}_{1^{++}}^{\alpha\beta}$	5.8	1.84-2.06	6.5	40-48	$2.11_{-0.21}^{+0.17}$	$0.056^{+0.012}_{-0.013} \ { m GeV^3}$
$ \bar{q}qg;2^{++}\rangle$	$J_{2^{++}}^{\alpha_1\beta_1,\alpha_2\beta_2}$	8.6	3.11-3.37	9.5	40-46	$2.44^{+0.20}_{-0.24}$	(au
$ \bar{q}qg;2^{-+}\rangle$	$\tilde{J}_{2^{-+}}^{\alpha_1\beta_1,\alpha_2\beta_2}$	12.7	2.54-3.60	14.0	40 - 54	$3.68^{+0.62}_{-0.18}$	-
$ \bar{q}qg;2^{-+}\rangle$	$J_{2^{-+}}^{\alpha_1\beta_1,\alpha_2\beta_2}$	8.3	3.07-3.41	9.5	40-48	$2.40^{+0.21}_{-0.25}$	8 <u>0</u> 9
$ \bar{q}qg;2^{++}\rangle$	$\tilde{J}_{2^{++}}^{\alpha_1\beta_1,\alpha_2\beta_2}$	11.7	2.47-3.70	14.0	40 <mark>-6</mark> 3	$3.46\substack{+0.27\\-0.11}$	

$$M_{|\bar{q}qg;1^{-}1^{-+}\rangle} = M_{|\bar{q}qg;0^{+}1^{-+}\rangle} = 1.67^{+0.15}_{-0.17} \text{ GeV},$$

$$f_{|\bar{q}qg;1^{-}1^{-+}\rangle} = f_{|\bar{q}qg;0^{+}1^{-+}\rangle} = 0.243^{+0.057}_{-0.052} \text{ GeV}^4$$

- Method of the QCD sum rules
- Numerical analyses
- Decay behavior

Summary

Decay behavior

Decay processes: normal & abnormal

FIG. 5: Decay mechanisms of the single-gluon hybrid states through (a) the normal process with one quark-antiquark pair excited from the valence gluon, and (b,c) the abnormal processes with the η/η' produced by the QCD axial anomaly.

A. Normal decay process

three-point correlation function:

$$\pi_{1} \equiv |\bar{q}qg; 1^{-}1^{-+}\rangle \to \rho\pi, \quad T_{\mu\nu}(p,k,q) = \int d^{4}x d^{4}y e^{ikx} e^{iqy} \times \langle 0|\mathbb{T}[J_{\nu}^{\rho^{-}}(x)J_{5}^{\pi^{+}}(y)J_{1^{-+}}^{\mu\dagger}(0)]|0\rangle$$

Decay behavior

select the isovector neutral-charged one

$$J_{1^{-+}}^{\mu} \to \frac{1}{\sqrt{2}} \left(\bar{u}_a \lambda_n^{ab} \gamma_\beta u_b - \bar{d}_a \lambda_n^{ab} \gamma_\beta d_b \right) g_s G_n^{\mu\beta}$$

phenomenological side

B. Abnormal decay process $\eta_1 \equiv |\bar{s}sg; 0^+1^{-+}\rangle \rightarrow \eta\eta'$,

three-point correlation function:

$$T'_{\mu\nu}(p,k,q) = \int d^4x e^{-ikx} \langle 0|\mathbb{T}[J^{\mu}_{1^{-+}}(0)J^{\eta\dagger}_{\nu}(x)]|\eta'\rangle, \quad J^{\mu}_{1^{-+}} \to \bar{s}_a \lambda^{ab}_n \gamma_\beta s_b g_s G^{\mu\beta}_n.$$

phenomenological side

$$\begin{split} T'_{\mu\nu}(p,k,q) &= g_{\eta\eta'}k_{\mu}k_{\nu} \ \frac{f_{\eta_1}g_{\eta}}{(m_{\eta_1}^2 - p^2)(m_{\eta}^2 - k^2)} \,, \\ \mathbf{QCD \ side} \\ T'_{\mu\nu}(p,k,q) &= \frac{2\theta_s m_{\eta'}^2 f_{\eta'}}{3} + \frac{2\pi^2 \theta_s m_{\eta'}^2 f_{\eta'} m_s \langle \bar{s}s \rangle}{3} \frac{1}{M_B^4} \,. \\ &= \frac{\theta_s k_{\mu}k_{\nu} \ \left(-\frac{2m_{\eta'}^2 f_{\eta'}}{3k^2} - \frac{4\pi^2 m_{\eta'}^2 f_{\eta'} m_s \langle \bar{s}s \rangle}{3k^6} \right) \,, \\ &= \theta_s k_{\mu}k_{\nu} \ \left(-\frac{2m_{\eta'}^2 f_{\eta'}}{3k^2} - \frac{4\pi^2 m_{\eta'}^2 f_{\eta'} m_s \langle \bar{s}s \rangle}{3k^6} \right) \,, \\ &= \frac{g_{\eta\eta'}}{3} = \frac{3.08^{+1.30}_{-0.91} \ \text{GeV}^{-1}}{5.0^{+4.6}_{-3.1} \ \text{MeV} \,. \end{split}$$

Decay behavior

	$ \bar{q}qg;1^{-}1^{-+}\rangle$	$ \bar{q}qg;0^+1^{-+}\rangle$	$ \bar{s}sg;0^+1^{-+}\rangle$
Channel	$M = 1.67^{+0.15}_{-0.17} \text{ GeV}$	$M = 1.67^{+0.15}_{-0.17} \text{ GeV}$	$M = 1.84^{+0.14}_{-0.15} \text{ GeV}$
$\pi_1/\eta_1 o ho\pi$	242_{-179}^{+310}	<u></u>	<u>71</u> 0
$\pi_1/\eta_1 \to b_1(1235)\pi$	$14.5^{+25.9}_{-13.9}$	6 <u>10</u>	<u> 21</u> 0
$\pi_1/\eta_1 \to f_1(1285)\pi$	$35.9^{+53.9}_{-36.4}$	1 <u>0</u>	<u>21</u> 6
$\pi_1/\eta_1 o \eta\pi$	$2.3^{+2.5}_{-1.2}$	8 <u>4</u> 9	<u>81</u> 6
$\pi_1/\eta_1 \stackrel{b}{ ightarrow} \eta\pi$	$57.8^{+65.0}_{-31.4}$	8 <u>0</u>	9 <u>—</u> 4
$\pi_1/\eta_1 o \eta' \pi$	$0.43^{+0.50}_{-0.28}$		-
$\pi_1/\eta_1 \xrightarrow{c} \eta' \pi$	149^{+162}_{-78}		-
$\pi_1/\eta_1 \to a_1(1260)\pi$	_	$79.5^{+112.4}_{-74.9}$	-
$\pi_1/\eta_1 \xrightarrow{a} \eta \eta'$	_	$0.07^{+0.12}_{-0.07}$	$0.93^{+1.04}_{-0.69}$
$\pi_1/\eta_1 \xrightarrow{b} \eta\eta'$	_	$1.62^{+2.13}_{-1.61}$	$1.64^{+1.51}_{-1.01}$
$\pi_1/\eta_1 \xrightarrow{c} \eta\eta'$	_	$11.5^{+11.7}_{-11.5}$	$5.0^{+4.6}_{-3.1}$
$\pi_1/\eta_1 \to K^*(892)\bar{K} + c.c.$	$25.3^{+34.7}_{-24.7}$	$25.3^{+34.7}_{-24.7}$	73.9+85.7
$\pi_1/\eta_1 \to K_1(1270)\bar{K} + c.c.$	_	<u> </u>	$14.6^{+19.8}_{-14.6}$
$\pi_1/\eta_1 \to K^*(892)\bar{K}^*(892)$	_		$0.08^{+0.39}_{-0.08}$
Sum	530^{+540}_{-330}	120^{+160}_{-110}	100^{+110}_{-80}

- Method of the QCD sum rules
- > Numerical analyses
- Decay behavior

Summary

Summary

- We calculate the masses of forty-four single-gluon hybrid states with the quarkgluon contents $\overline{q}qg$ (q = u/d) and $\overline{s}sg$.
- Our results support the interpretations of the $\pi_1(1600)$ and $\eta_1(1855)$ as the hybrid states $|\bar{q}qg; 1^-1^{-+}\rangle$ and $|\bar{s}sg; 0^+1^{-+}\rangle$, respectively.
- Considering the uncertainties, our results suggest that the $\pi_1(1600)$ and $\eta_1(1855)$ may also be interpreted as the hybrid states $|\bar{q}qg; 1^-1^{-+}\rangle$ and $|\bar{q}qg; 0^+1^{-+}\rangle$, respectively.
- To differentiate these two assignments and to verify whether they are hybrid states or not, we propose to examine the $a_1(1260)\pi$ decay channel in future experiments.

Thanks for your attention !