Semileptonic decays of Λ_b baryons

报告人:段慧慧

合作者:刘永录、常钦、黄明球 Eur. Phys. J. C (2022) 82:951, *arXiv*:2406.00353

河南师范大学

第六届粒子物理"天问"论坛

洛阳, 2024年11月10日

1 Introduction

- 2 Form factors of $\Lambda_b \to \Lambda_c^{(*)}$
 - Light-cone sum rule calculations of form factors
 - An overview of Λ_b LCDAs

Applications on semileptonic decays

4 Conclusions

イロト イポト イヨト イヨト

1 Introduction

- **2** Form factors of $\Lambda_b \to \Lambda_c^{(*)}$
 - Light-cone sum rule calculations of form factors
 - An overview of Λ_b LCDAs

3 Applications on semileptonic decays

4 Conclusions

Investigation of the semileptonic decay modes of Λ_b baryon provide us:

- Determine the CKM matrix element V_{cb} , V_{ub} on baryon sectors;
- Know more about the inner structure of heavy flavor baryons;
- Test the Standard Model and explore the New Physics and beyond.

Moreover, we need the non-pertubative parameters form factors, the reason why we choose Λ_b baryon as the object is that:

- Λ_b semileptonic decays are clear channel;
- In bottom baryon section, its decay modes are abundantent, 75 decay modes listed in PDG.

▲□▶▲圖▶▲≣▶▲≣▶ = 差 - 釣ぬ⊙

• Recently experiment result: LHCb PRL 128,191803 (2022)

$$\begin{aligned} \mathcal{B}r(\Lambda_b^0 &\to \Lambda_c^+ \tau^- \bar{\nu}_\tau) \\ &= (1.50 \pm 0.16_{\text{stat}} \pm 0.25_{\text{syst}} \pm 0.23)\% \end{aligned}$$

$$\mathcal{R}(\Lambda_c^+) \equiv \mathcal{B}r(\Lambda_b^0 \to \Lambda_c^+ \tau^- \bar{\nu}_\tau) / \mathcal{B}r(\Lambda_b^0 \to \Lambda_c^+ \mu^- \bar{\nu}_\mu)$$

= (0.242 ± 0.026 ± 0.040).

• PDG:

CDF Phys. Rev. D 79, 032001 (2009)

$$\begin{aligned} &\mathcal{B}r(\Lambda_b^0 \to \Lambda_c^+ \ell^- \bar{\nu}_\ell) = (6.2^{+1.4}_{-1.3}) \times 10^{-2} \\ &\mathcal{B}r(\Lambda_b^0 \to \Lambda_c(2595)^+ \ell^- \bar{\nu}_\ell) = (7.9^{+4.0}_{-3.5}) \times 10^{-3} \end{aligned}$$

• Recent 5 years PDG refs. on Λ_b :

∧⁰_b REFERENCES

AAIJ	23BB	PRL 131 151801	R. Aaij et al.	(LHCb	Collab.)
AAIJ	23K	JHEP 2307 075	R. Aaij et al.	(LHCb	Collab.)
AAIJ	22K	PRL 128 191803	R. Aaij et al.	(LHCb	Collab.)
AAIJ	22M	PR D105 L051104	R. Aaij et al.	(LHCb	Collab.)
AAIJ	22R	JHEP 2203 153	R. Aaij et al.	(LHCb	Collab.)
AAIJ	21AD	PR D104 112008	R. Aaij et al.	(LHCb	Collab.)
AAIJ	21AJ	JHEP 2110 060	R. Aaij et al.	(LHCb	Collab.)
AAIJ	21B	PL B815 136172	R. Aaij et al.	(LHCb	Collab.)
AAIJ	21R	JHEP 2105 095	R. Aaij et al.	(LHCb	Collab.)
AAIJ	20AB	PR D102 051101	R. Aaij et al.	(LHCb	Collab.)
AAIJ	20AK	PR D102 112012	R. Aaij et al.	(LHCb	Collab.)
AAIJ	20M	JHEP 2005 040	R. Aaij et al.	(LHCb	Collab.)
AAIJ	200	JHEP 2006 110	R. Aaij et al.	(LHCb	Collab.)
SIRUNYAN	20H	PL B802 135203	A.M. Sirunyan et al.	(CMS	Collab.)
AAIJ	19AH	EPJ C79 745	R. Aaij et al.	(LHCb	Collab.)
AAIJ	19AN	JHEP 1909 028	R. Aaij et al.	(LHCb	Collab.)
AAIJ	19F	JHEP 1903 126	R. Aaij et al.	(LHCb	Collab.)
AAIJ	19Z	PRL 123 031801	R. Aaij et al.	(LHCb	Collab.)
AAIJ	18AF	JHEP 1808 131	R. Aaij et al.	(LHCb	Collab.)
AAIJ	18AG	JHEP 1808 039	R. Aaij et al.	(LHCb	Collab.)
AAIJ	18AO	JHEP 1809 145 (errat.)	R. Aaij et al.	(LHCb	Collab.)
AAIJ	18AP	JHEP 1809 146	R. Aaij et al.	(LHCb	Collab.)
AAIJ	18AW	PL B784 101	R. Aaij et al.	(LHCb	Collab.)
AAIJ	18AX	PL B787 124	R. Aaij et al.	(LHCb	Collab.)
AAIJ	18Q	JHEP 1802 098	R. Aaij et al.	(LHCb	Collab.)
PDG	18	PR D98 030001	M. Tanabashi et al.	(PDG	Collab.)
SIRUNYAN	18BY	EPJ C78 457	A.M. Sirunyan et al.	(CMS	Collab.)
SIRUNYAN	18R	PR D97 072010	A.M. Sirunyan et al.	(CMS	Collab.)

イロト イ理ト イヨト イヨト

2

• Theoretical studies on Λ_b semileptonic decays

 $\Lambda_b \rightarrow \Lambda_c$: light-front quark model; Lattice QCD; heavy quark effective theory; covariant confinded quark model;QCD sum rule; relativistic quark model; Hypercentral sonstituent quark model *etc*.

 $\Lambda_b \rightarrow \Lambda_c(2595)$: light-front quark model; Lattice QCD; heavy quark symmetry; covariant confinede quark model; constituent quark model; Bakamjian-Thomas approach with quark model *etc*.

イロト 不得 トイヨト イヨト 二日

Introduction

- 2 Form factors of $\Lambda_b \to \Lambda_c^{(*)}$
 - Light-cone sum rule calculations of form factors
 - An overview of Λ_b LCDAs

3 Applications on semileptonic decays

4 Conclusions

For the calculations of Λ_b weak decay form factors, we use the light-cone QCD sum rule approach.

• The starting point of LCSR is the weak decay correlator:

$$T_{\mu}(p,q) = i \int d^4x e^{ip \cdot x} \langle 0 | \mathcal{T}\{j_{\Lambda_c}(x), j_{\mu}(0)\} | \Lambda_b(p+q) \rangle.$$

• There are two currents in the above correlator:

Hadron interpolating current j_{Λ_c} and weak decay current j_{μ} (V-A).

• Positive parity and negative Λ_c are related by a γ_5 factor. Therefore, we can insert both the positive and negative parity Λ_c and $\Lambda_c(2595)^+$ states in the correlator.

• The next step is calculating the correlator on both hadronic and QCD level. The hadronic level representation can be represented as:

$$\begin{split} T_{\mu}(p,q) &= \frac{\langle 0|j_{\Lambda_{c}}^{i}(x)|\Lambda_{c}(p)\rangle\langle\Lambda_{c}(p)|j_{\mu}(0)|\Lambda_{b}(p+q)}{M_{\Lambda_{c}}^{2}-p^{2}} \\ &+ \frac{\langle 0|j_{\Lambda_{c}^{*}}^{i}(x)|\Lambda_{c}^{*}(p)\rangle\langle\Lambda_{c}^{*}(p)|j_{\mu}(0)|\Lambda_{b}(p+q)}{M_{\Lambda_{c}^{*}}^{2}-p^{2}} + \text{higher states.} \end{split}$$

Now, the correlator contains both the contribution of Λ_c and $\Lambda_c(2595)^+$ on hadronic side.

イロト イポト イヨト イヨト

• For
$$\Lambda_b \to \Lambda_c \left(\frac{1}{2}^+ \to \frac{1}{2}^+\right)$$
:
 $\langle \Lambda_c | \bar{c} \gamma_\mu (1 - \gamma_5) b | \Lambda_b \rangle = \bar{u}(p, s_1) [\gamma_\mu f_1(q^2) + i \frac{f_2(q^2)}{M_{\Lambda_b}} \sigma_{\mu\nu} q^\nu + \frac{f_3(q^2)}{M_{\Lambda_b}} q_\mu] u_{\Lambda_b}(p+q, s_2)$
 $- \bar{u}(p, s_1) [\gamma_\mu g_1(q^2) + i \frac{g_2(q^2)}{M_{\Lambda_b}} \sigma_{\mu\nu} q^\nu + \frac{g_3(q^2)}{M_{\Lambda_b}} q_\mu] \gamma_5 u_{\Lambda_b}(p+q, s_2).$

• For the
$$\Lambda_b^0 \to \Lambda_c^* \left(\frac{1}{2}^+ \to \frac{1}{2}^- \right)$$
:

$$\begin{split} \langle \Lambda_c^* | \bar{c} \gamma_\mu (1 - \gamma_5) b | \Lambda_b \rangle = \bar{u}(p, s_1) [\gamma_\mu f_1^*(q^2) + i \frac{f_2^*(q^2)}{M_{\Lambda_b}} \sigma_{\mu\nu} q^\nu + \frac{f_3^*(q^2)}{M_{\Lambda_b}} q_\mu] \gamma_5 u_{\Lambda_b}(p + q, s_2) \\ - \bar{u}(p, s_1) [\gamma_\mu g_1^*(q^2) + i \frac{g_2^*(q^2)}{M_{\Lambda_b}} \sigma_{\mu\nu} q^\nu + \frac{g_3^*(q^2)}{M_{\Lambda_b}} q_\mu] u_{\Lambda_b}(p + q, s_2). \end{split}$$

10/27

• Another form often used in Lattice QCD:

$$\begin{split} \langle \Lambda_c^* | \bar{c} \gamma_\mu (1 - \gamma_5) b | \Lambda_b \rangle \\ &= \bar{u}(p, s_1) \gamma_5 \{ f_0^* (M_{\Lambda_b} + M_{\Lambda_c^*}) \frac{q^\mu}{q^2} + f_+^* \frac{M_{\Lambda_b} - M_{\Lambda_c^*}}{s_-} [p^\mu + p'^\mu - (M_{\Lambda_b}^2 - M_{\Lambda_c}^2) \frac{q^\mu}{q^2}] \\ &+ f_\perp^* [\gamma^\mu + \frac{2M_{\Lambda_c^*}}{s_-} p^\mu - \frac{2M_{\Lambda_b}}{s_-} p'^\mu] + g_0^* \gamma_5 (M_{\Lambda_b} - M_{\Lambda_c^*}) \frac{q^\mu}{q^2} + g_+^* \gamma_5 \frac{M_{\Lambda_b} + M_{\Lambda_c^*}}{s_+} [p^\mu + p'^\mu \\ &- (M_{\Lambda_b}^2 - M_{\Lambda_c^*}^2) \frac{q^\mu}{q^2}] + g_\perp^* \gamma_5 [\gamma^\mu - \frac{2M_{\Lambda_c^*}}{s_+} p^\mu - \frac{2M_{\Lambda_b}}{s_+} p'^\mu] \} u_{\Lambda_b}(p', s_2) \end{split}$$

• The transformation relations of these two types form factors are:

$$\begin{split} f_0^* = & \frac{q^2}{M_{\Lambda_b}(M_{\Lambda_b} + M_{\Lambda_c^*})} f_3^* - f_1^*; \\ f_+^* = & -\frac{q^2}{M_{\Lambda_b}(M_{\Lambda_b} - M_{\Lambda_c^*})} f_2^* - f_1^*; \\ f_{\perp}^* = & \frac{M_{\Lambda_c^*} - M_{\Lambda_b}}{M_{\Lambda_b}} f_2^* - f_1^*; \\ f_{\perp}^* = & \frac{M_{\Lambda_c^*} - M_{\Lambda_b}}{M_{\Lambda_b}} f_2^* - f_1^*; \\ g_{\perp}^* = & \frac{M_{\Lambda_c^*} + M_{\Lambda_b}}{M_{\Lambda_b}} g_2^* - g_1^*. \end{split}$$

Scalar: j^S_{Λ_c}(x) = ε_{ijk}[u(x) Cd(x)]γ₅c(x), no contributions in sum rules;
 Pseudoscalar: j^P_{Λ_c}(x) = ε_{ijk}[u(x) Cγ₅d(x)]c(x);

(3) Axial-vector: $j_{\Lambda_c}^A(x) = \epsilon_{ijk}[u(x) C \gamma_5 \gamma_{\nu} d(x)] \gamma^{\nu} c(x).$

• For the pseudoscalar current $j_{\Lambda_c}^P$, the correlation function $T_{\mu}(p,q)$ is given by:

$$T_{\mu}(p,q) = i \int d^{4}x e^{ip \cdot x} \langle 0 | \mathcal{T} \{ j^{P}_{\Lambda_{c}}(x), j_{\mu}(0) \} | \Lambda_{b}(p+q) \rangle$$

= $i \int d^{4}x e^{ip \cdot x} (C\gamma_{5})_{\alpha\beta} S_{\sigma\tau}(x) [\gamma_{\mu}(1-\gamma_{5})]_{\tau\gamma} \langle 0 | \epsilon_{ijk} u^{iT}_{\alpha}(x) d^{j}_{\beta}(x) b^{k}_{\gamma}(0) | \Lambda_{b}(p+q) \rangle.$

• For the axial-vector current $j_{\Lambda_c}^A$:

$$T_{\mu}(p,q) = i \int d^{4}x e^{ip \cdot x} \langle 0 | \mathcal{T}\{j^{A}_{\Lambda_{c}}(x), j_{\mu}(0)\} | \Lambda_{b}(p+q) \rangle$$

= $i \int d^{4}x e^{ip \cdot x} (C\gamma_{5}\gamma_{\nu})_{\alpha\beta} S_{\sigma\tau}(x) [\gamma_{\mu}(1-\gamma_{5})]_{\tau\gamma} \gamma^{\nu}_{\rho\sigma} \langle 0 | \epsilon_{ijk} u^{iT}_{\alpha}(x) d^{j}_{\beta}(x) b^{k}_{\gamma}(0) | \Lambda_{b}(p+q) \rangle.$

▲□▶▲圖▶▲≣▶▲≣▶ = 差 - 釣ぬ⊙

• The red part matrix element $\langle 0|\epsilon_{ijk}u_{\alpha}^{iT}(x)d_{\beta}^{j}(x)b_{\gamma}^{k}(0)|\Lambda_{b}(p+q)\rangle$ can be defined by:

$$\begin{split} \frac{1}{v_{+}} \langle 0 | \left[u(t_{1}) \mathcal{C} \gamma_{5} \not{p} d(t_{2}) \right] b_{\gamma} | \Lambda_{b} \rangle &= \psi^{n}(t_{1}, t_{2}) f_{\Lambda_{b}}^{(1)} u_{\gamma}, \\ \frac{i}{2} \langle 0 | \left[u(t_{1}) \mathcal{C} \gamma_{5} \sigma_{\bar{n}n} d(t_{2}) \right] b_{\gamma} | \Lambda_{b} \rangle &= \psi^{n\bar{n}}(t_{1}, t_{2}) f_{\Lambda_{b}}^{(2)} u_{\gamma}, \\ \langle 0 | \left[u(t_{1}) \mathcal{C} \gamma_{5} d(t_{2}) \right] b_{\gamma} | \Lambda_{b} \rangle &= \psi^{\mathbb{1}}(t_{1}, t_{2}) f_{\Lambda_{b}}^{(2)} u_{\gamma}, \\ v_{+} \langle 0 | \left[u(t_{1}) \mathcal{C} \gamma_{5} \not{p} d(t_{2}) \right] b_{\gamma} | \Lambda_{b} \rangle &= \psi^{\bar{n}}(t_{1}, t_{2}) f_{\Lambda_{b}}^{(1)} u_{\gamma}. \end{split}$$

$$\begin{split} \epsilon^{ijk} \langle 0 | u^i_{\alpha}(t_1 n) d^j_{\beta}(t_2 n) b^k_{\gamma} | \Lambda_b \rangle \\ &= \frac{1}{8} v_+ f^{(1)}_{\Lambda_b} \Psi^n(t_1, t_2) (\not{\pi} \gamma_5 C^T)_{\beta \alpha} u_{\Lambda_b \gamma}(v) \\ &+ \frac{1}{4} f^{(2)}_{\Lambda_b} \Psi^1(t_1, t_2) (\gamma_5 C^T)_{\beta \alpha} u_{\Lambda_b \gamma}(v) \\ &- \frac{1}{8} f^{(2)}_{\Lambda_b} \Psi^{n\bar{n}}(t_1, t_2) (i\sigma_{n\bar{n}} \gamma_5 C^T)_{\beta \alpha} u_{\Lambda_b \gamma}(v) \\ &+ \frac{1}{8} \frac{1}{v_+} f^{(1)}_{\Lambda_b} \Psi^{\bar{n}}(t_1, t_2) (\not{\pi} \gamma_5 C^T)_{\beta \alpha} u_{\Lambda_b \gamma}(v). \end{split}$$

ヘロト 人間 とくほ とくほど

3

For the Λ_b → Λ_c form factors, we use Type V LCDAs of Λ_b in LCSRs:
Type V:

$$\begin{split} \tilde{\psi}_{2}(\omega, u) &= \omega^{2} u(1-u) \left[\frac{1}{\epsilon_{0}^{4}} e^{-\omega/\epsilon_{0}} + a_{2} C_{2}^{3/2} (2u-1) \frac{1}{\epsilon_{1}^{4}} e^{-\omega/\epsilon_{1}} \right], \\ \tilde{\psi}_{3}^{s}(\omega, u) &= \frac{\omega}{2\epsilon_{3}^{3}} e^{-\omega/\epsilon_{3}}, \\ \tilde{\psi}_{3}^{\sigma}(\omega, u) &= \frac{\omega}{2\epsilon_{3}^{3}} (2u-1) e^{-\omega/\epsilon_{3}}, \\ \tilde{\psi}_{4}(\omega, u) &= 5 \mathcal{N}^{-1} \int_{\omega/2}^{s_{0}^{h_{b}}} ds e^{-s/\tau} (s-\omega/2)^{3} \end{split}$$

• And other four Λ_b LCDAs models are also used to calculate $\Lambda_b \to \Lambda_c(2595)^+$ form factors in LCSRs:

• Type III:

$$\begin{split} \tilde{\psi}_{2}(\omega, u) = & \omega^{2} u(1-u) \sum_{n=0}^{2} \frac{a_{n}}{\epsilon_{n}^{4}} \frac{C_{n}^{3/2}(2u-1)}{|C_{n}^{3/2}|^{2}} e^{-\omega/\epsilon_{n}}, \\ \tilde{\psi}_{3}(\omega, u) = & \frac{\omega}{2} \sum_{n=0}^{2} \frac{a_{n}}{\epsilon_{n}^{3}} \frac{C_{n}^{1/2}(2u-1)}{|C_{n}^{1/2}|^{2}} e^{-\omega/\epsilon_{n}}, \\ \tilde{\psi}_{4}(\omega, u) = & \sum_{n=0}^{2} \frac{a_{n}}{\epsilon_{n}^{2}} \frac{C_{n}^{1/2}(2u-1)}{|C_{n}^{1/2}|^{2}} e^{-\omega/\epsilon_{n}}. \end{split}$$

• Type II:

$$\begin{split} \psi_2(\omega, u) &= \frac{\omega^2 u(1-u)}{\omega_0^4} e^{-\omega/\omega_0}, \quad \psi_3^s(\omega, u) = \frac{\omega}{2\omega_0^3} e^{-\omega/\omega_0}, \\ \psi_3^{\,\sigma}(\omega, u) &= \frac{\omega(2u-1)}{2\omega_0^3} e^{-\omega/\omega_0}, \quad \psi_4(\omega, u) = \frac{1}{\omega_0^2} e^{-\omega/\omega_0}, \end{split}$$

$$\begin{split} \psi_2(\omega,u) &= \frac{15\omega^2 u(1-u)(2\bar{\Lambda}-\omega)}{4\bar{\Lambda}^5} \theta(2\bar{\Lambda}-\omega), \\ \psi_3^s(\omega,u) &= \frac{15\omega(2\bar{\Lambda}-\omega)^2}{16\bar{\Lambda}^5} \theta(2\bar{\Lambda}-\omega), \\ \psi_3^\sigma(\omega,u) &= \frac{15\omega(2\bar{\Lambda}-\omega)^2(2u-1)}{8\bar{\Lambda}^5} \theta(2\bar{\Lambda}-\omega), \\ \psi_4(\omega,u) &= \frac{5(2\bar{\Lambda}-\omega)^3}{8\bar{\Lambda}^5} \theta(2\bar{\Lambda}-\omega), \end{split}$$

• Type IV:

$$\begin{split} \tilde{\psi}_{2}(\omega, u) &= \frac{15}{2} \mathcal{N}^{-1} \omega^{2} (1-u) u \int_{\omega/2}^{s_{0}^{\Lambda} b} ds e^{-s/\tau} (s-\omega/2), \\ \tilde{\psi}_{3}^{s}(\omega, u) &= \frac{15}{4} \mathcal{N}^{-1} \omega \int_{\omega/2}^{s_{0}^{\Lambda} b} ds e^{-s/\tau} (s-\omega/2)^{2}, \\ \tilde{\psi}_{3}^{\sigma}(\omega, u) &= \frac{15}{4} \mathcal{N}^{-1} \omega (2u-1) \int_{\omega/2}^{s_{0}^{\Lambda} b} ds e^{-s/\tau} (s-\omega/2)^{2}, \\ \tilde{\psi}_{4}(\omega, u) &= 5 \mathcal{N}^{-1} \int_{\omega/2}^{s_{0}^{\Lambda} b} ds e^{-s/\tau} (s-\omega/2)^{3}, \end{split}$$

• There are twelves Lorentz structures and corresponding coefficients both on hadronic and QCD side in total:

$$\begin{split} T_{\mu}(p,q) = &\Pi_{v_{\mu}}v_{\mu} + \Pi_{\gamma_{\mu}}\gamma_{\mu} + \Pi_{q_{\mu}}q_{\mu} + \Pi_{v_{\mu}\not{a}}v_{\mu}\not{a} + \Pi_{\gamma_{\mu}\not{a}}\gamma_{\mu}\not{a} + \Pi_{q_{\mu}\not{a}}q_{\mu}\not{a} \\ &+ \Pi_{v_{\mu}\gamma_{5}}v_{\mu}\gamma_{5} + \Pi_{\gamma_{\mu}\gamma_{5}}\gamma_{\mu}\gamma_{5} + \Pi_{q_{\mu}\gamma_{5}}q_{\mu}\gamma_{5} + \Pi_{v_{\mu}\not{a}\gamma_{5}}v_{\mu}\not{a}\gamma_{5} + \Pi_{\gamma_{\mu}\not{a}\gamma_{5}}\gamma_{\mu}\not{a}\gamma_{5} \\ &+ \Pi_{q_{\mu}\not{a}\gamma_{5}}q_{\mu}\not{a}\gamma_{5}. \end{split}$$

On the hadronic side, the coefficients Π_{Γ_i} contain form factors;

On the QCD side, they are functions of momentum transfer square q^2 .

- Next, we will extracting the form factors from the two side use of correlator.
 - 1. Matching the Lorentz structures on both side;
 - 2. Using Borel transformation to suppress the higher excited and continuum states.
 - 3. Obtain the form factors.

- Form factors deduced from LCSR only functions on $q^2 < 2.5 \text{ GeV}^2$, we need to extrapolate them to the entire physical regions.
- The following fitting formula is used to do this manipulation:

$$f_i(q^2)/g_i(q^2) = \frac{f_i(0)/g_i(0)}{1 - q^2/M_{B_c}^2} \Big\{ b_1 \left[z(q^2) - z(0) \right] \\ + b_2 \left[z(q^2)^2 - z(0)^2 \right] + 1 \Big\}.$$

$$z(q^2, t_0) = \frac{\sqrt{t_+ - q^2} - \sqrt{t_+ - t_0}}{\sqrt{t_+ - q^2} + \sqrt{t_+ - t_0}},$$

where t_+ and t_0 are given by:

$$t_{+} = \left(M_{\Lambda_{b}} + M_{\Lambda_{c}^{*}}\right)^{2},$$

$$t_{0} = \left(M_{\Lambda_{b}} + M_{\Lambda_{c}^{*}}\right) \cdot \left(\sqrt{M_{\Lambda_{b}}} - \sqrt{M_{\Lambda_{c}^{*}}}\right)^{2}.$$

- Fitting the form factors on the data range $-15 \text{ GeV}^2 < q^2 < 2.5 \text{ GeV}^2$, q^2 larger than 2.5 GeV² sum rule will break down.
- Form factors on the whole physical regions m²_ℓ ≤ q² ≤ (M_{Λ_b} M_{Λ_c})²: LQCD(disipative points): w near 1.01 and 1.03. LCSR(shadde bands): q² < 2.5 GeV², w ≥ 1.23.

Hui-Hui Duan (HNNU)

• For the weak decay form factors of $\Lambda_b \to \Lambda_c$, they have the relations:

$$f_1(q^2) = g_1(q^2), f_2(q^2) = f_3(q^2) = g_2(q^2) = g_3(q^2)$$

• Form factors of $\Lambda_b^0 \to \Lambda_c^+$ by using Type V Λ_b LCDAs and $j_{\Lambda_c}^P$:

$F_i(q^2)$	$F_i(0)$	b_1	b_2
$f_1(q^2)$	$0.534^{+0.060}_{-0.074}$	$-2.883^{+0.779}_{-1.619}$	$-15.991^{+9.571}_{-3.108}$
$f_2(q^2)$	$-0.054^{+0.013}_{-0.011}$	$-11.474^{+2.262}_{-2.369}$	$34.934_{-12.878}^{+21.608}$

• Form factors of $\Lambda_b^0 \to \Lambda_c^+$ by using Type V Λ_b LCDAs and $j_{\Lambda_c}^A$:

$$f_1(0) = g_1(0) = 0.644^{+0.175}_{-0.352}$$

$$f_2(0) = f_3(0) = g_2(0) = g_3(0) = -0.100^{+0.061}_{-0.039}$$

<ロト < 課 > < 注 > < 注 > < 注 > のQC

• Form Factors within five different Λ_b LCDAs models for $\Lambda_b \to \Lambda_c(2595)^+$:

			$j^{P}_{\Lambda_c}$			$j^{A}_{\Lambda_{c}}$	
Λ_b LCDAs	$f_i^{*}(q^2)$	$f_i^*(0)$	b_1	b_2	$f_{i}^{*}(0)$	b_1	b_2
Type I	$\begin{array}{c} f_1^*(q^2) \\ f_2^*(q^2) \end{array}$	$\begin{array}{c} 0.087\substack{+0.045\\-0.030}\\-0.070\substack{+0.017\\-0.013}\end{array}$	$3.135^{+1.052}_{-1.827}$ $-4.131^{+4.375}_{-4.592}$	$\begin{array}{r} -31.005^{+5.275}_{-1.394} \\ -13.180^{+29.470}_{-19.423} \end{array}$	$\begin{array}{c}-0.250\substack{+0.090\\-0.121}\\0.199\substack{+0.098\\-0.073}\end{array}$	$\begin{array}{r}-2.070\substack{+2.287\\-2.284}\\-15.683\substack{+2.208\\-2.070}\end{array}$	$\begin{array}{r}-18.173\substack{+13.416\\-11.995}\\70.549\substack{+16.979\\-17.481}\end{array}$
Type II	$\begin{array}{c} f_1^*(q^2) \\ f_2^*(q^2) \end{array}$	$\begin{array}{c} 0.023\substack{+0.010\\-0.008}\\-0.027\substack{+0.008\\-0.010}\end{array}$	$-6.110^{+0.268}_{-0.504} \\ -21.246^{+0.641}_{-0.728}$	$5.244^{+2.826}_{-1.124}$ 118.441 ^{+6.101} _{-5.297}	$\begin{array}{c}-0.122\substack{+0.037\\-0.046}\\0.068\substack{+0.027\\-0.022}\end{array}$	$\begin{array}{r}-9.056\substack{+0.703\\-0.863}\\-20.416\substack{+0.595\\-0.189}\end{array}$	$27.885^{+5.771}_{-4.519} \\ 110.738^{+13.804}_{-4.832}$
Type III	$\begin{array}{c} f_1^*(q^2) \\ f_2^*(q^2) \end{array}$	$\begin{array}{c} 0.136\substack{+0.064\\-0.047}\\-0.168\substack{+0.055\\-0.068}\end{array}$	$-8.401\substack{+0.612\\-0.707}\\-24.277\substack{+1.158\\-0.995}$	$17.115^{+5.484}_{-4.765} \\ 143.305^{+9.632}_{-11.322}$	$\begin{array}{c}-0.150\substack{+0.053\\-0.070}\\0.075\substack{+0.043\\-0.032}\end{array}$	$-16.659^{+0.475}_{-0.441}\\-33.299^{+0.269}_{-0.238}$	$\begin{array}{c} 83.488^{+3.694}_{-4.134} \\ 231.369^{+2.023}_{-2.507} \end{array}$
Type IV	$\begin{array}{c} f_1^*(q^2) \\ f_2^*(q^2) \end{array}$	$\begin{array}{c} 0.024\substack{+0.012\\-0.008}\\-0.030\substack{+0.010\\-0.012}\end{array}$	$-8.513^{+0.619}_{-0.481}\\-24.590^{+0.657}_{-0.628}$	$19.595^{+3.362}_{-4.418} \\ 147.657^{+5.714}_{-6.045}$	$\begin{array}{c}-0.107\substack{+0.036\\-0.047}\\0.049\substack{+0.026\\-0.019}\end{array}$	$\begin{array}{r}-14.680\substack{+0.503\\-0.560}\\-28.373\substack{+0.186\\-0.151}\end{array}$	$\begin{array}{c} 68.608^{+4.327}_{-3.907} \\ 183.921^{+1.035}_{-1.448} \end{array}$
Type V	$\begin{array}{c} f_1^*(q^2) \\ f_2^*(q^2) \end{array}$	$\begin{array}{c} 0.057^{+0.022}_{-0.016} \\ -0.056^{+0.014}_{-0.022} \end{array}$	$-0.521^{+0.339}_{-0.753}\\-11.977^{+1.294}_{-1.584}$	$-24.239^{+2.607}_{-0.144}\\40.732^{+12.077}_{-9.441}$	$\begin{array}{c} -0.466\substack{+0.103\\-0.116}\\ 0.406\substack{+0.092\\-0.085}\end{array}$	$\begin{array}{r} 4.634^{+1.186}_{-1.628} \\ -9.206^{+1.375}_{-1.750} \end{array}$	$-50.227^{+5.668}_{-2.680}\\20.098^{+12.583}_{-9.251}$

Introduction

- 2) Form factors of $\Lambda_b \to \Lambda_c^{(*)}$
 - Light-cone sum rule calculations of form factors
 - An overview of Λ_b LCDAs

Applications on semileptonic decays

4 Conclusions

• Differential decay widths of $\Lambda_b \to \Lambda_c(2595) \ell \bar{\nu}_\ell (\frac{1}{2}^+ \to \frac{1}{2}^-)$:

$$\frac{d\Gamma}{dq^2} = \frac{G_F^2 |V_{\rm CKM}|^2}{192\pi^3} \frac{M_{\Lambda_b}^2 - M_{\Lambda_c^*}^2}{2M_{\Lambda_b}^3} \frac{(q^2 - m_\ell^2)^2}{q^2} \mathcal{H}_{\frac{1}{2} \to -\frac{1}{2}}.$$

• Helicity amplitudes:

$$\begin{split} \mathcal{H}_{\frac{1}{2} \to -\frac{1}{2}} = & |H_{\frac{1}{2},0}|^2 + |H_{-\frac{1}{2},0}|^2 + |H_{\frac{1}{2},1}|^2 + |H_{-\frac{1}{2},-1}|^2 + \frac{m_{\ell}^2}{2q^2} \left(3|H_{\frac{1}{2},t}|^2 + 3|H_{-\frac{1}{2},t}|^2 + |H_{\frac{1}{2},1}|^2 + |H_{\frac{1}{2},1}|^2 + |H_{-\frac{1}{2},0}|^2\right) \\ & + |H_{-\frac{1}{2},-1}|^2 + |H_{\frac{1}{2},0}|^2 + |H_{-\frac{1}{2},0}|^2 \right). \end{split}$$

• The relations from form factors to helicity amplitudes:

$$\begin{split} H_{\frac{1}{2},0}^{V} &= \sqrt{\frac{Q_{+}}{q^{2}}} \left[f_{1}^{*}(q^{2})M_{-} + f_{2}^{*}(q^{2})\frac{q^{2}}{M_{\Lambda_{b}}} \right], \quad H_{\frac{1}{2},0}^{A} &= \sqrt{\frac{Q_{-}}{q^{2}}} \left[M_{+}g_{1}^{*}(q^{2}) - \frac{q^{2}}{M_{\Lambda_{b}}}g_{2}^{*}(q^{2}) \right], \\ H_{\frac{1}{2},1}^{V} &= \sqrt{2Q_{+}} \left[-f_{1}^{*}(q^{2}) - \frac{M_{-}}{M_{\Lambda_{b}}}f_{2}^{*}(q^{2}) \right], \quad H_{\frac{1}{2},1}^{A} &= \sqrt{2Q_{-}} \left[-g_{1}^{*}(q^{2}) + \frac{M_{+}}{M_{\Lambda_{b}}}g_{2}^{*}(q^{2}) \right], \\ H_{\frac{1}{2},t}^{V} &= \sqrt{\frac{Q_{-}}{q^{2}}} \left[M_{+}f_{1}^{*}(q^{2}) - \frac{q^{2}}{M_{\Lambda_{b}}}f_{3}^{*}(q^{2}) \right], \quad H_{\frac{1}{2},t}^{A} &= \sqrt{\frac{Q_{+}}{q^{2}}} \left[M_{-}g_{1}^{*}(q^{2}) + \frac{q^{2}}{M_{\Lambda_{b}}}g_{3}^{*}(q^{2}) \right]. \end{split}$$

• Branching ratios of $\Lambda_b^0 \to \Lambda_c^+ \ell^- \bar{\nu}_\ell : (j_{\Lambda_c}^1 = j_{\Lambda_c}^P, j_{\Lambda_c}^2 = j_{\Lambda_c}^A)$

References	Decay widths $\Gamma(\times 10^{10} \ \Gamma(\Lambda_b^0 \to \Lambda_c^+ \ell^- \overline{\nu}_\ell)$	$\Gamma(\Lambda_b^0 \to \Lambda_c^+ \tau^- \overline{\nu}_\tau)$	Branching fractions (×10 ⁻ $\mathcal{B}r(\Lambda_b^0 \to \Lambda_c^+ \ell^- \overline{\nu}_\ell)$	$\mathcal{B}r(\Lambda_b^0 \to \Lambda_c^+ \tau^- \overline{\nu}_\tau)$
LHCb [1]	_	-	-	1.50
DELPHI [2]	_	_	5.0	_
CDF [3]	-	-	7.3	2.0
[5]	5.4	_	-	-
[6]	3.52	1.12	6.04	1.87
[7]	_	_	6.2, 6.3	-
[8]	-	-	5.59, 5.57	1.54
[9]	5.0, 7.7	-	-	-
[10]	-	-	6.47, 6.45	1.97
[11]	3.61	1.2	-	-
[15]	4.42,4.41	1.39	6.48, 6.46	2.03
[16]	_	-	6.9	2.0
[18]	4.11	-	6.04	-
[21]	-	-	5.34	1.78
[57]	5.9	-	-	-
[58]	5.1	-	-	-
[43]	5.39	-	-	-
[59]	6.09	-	-	-
[60]	5.01, 7.61, 2.73	-	-	
[61]	-	-	6.3	-
[62]	5.82	-	-	-
[63]	5.02, 5.64	-	6.2, 6.9	-
[64]	4.50	-	6.61	-
This work $j_{A_1}^1$	3.95, 3.94	1.08	5.81, 5.79	1.59
This work j_A^2	4.60, 4.57	1.09	6.76, 6.73	1.61

Table 4 The decay widths and branching fractions compared with other models. The first and second values in the Γ and $\mathcal{B}r$ columns of $A_b^0 \to A_c^+ e^- \overline{\nu}_{\ell}$ and $A_b^0 \to A_c^+ e^- \overline{\nu}_{\ell}$, and $A_b^0 \to A_c^+ e^- \overline{\nu}_{\ell}$, respectively. All the data listed are the central values

 • Branching rations of $\Lambda_b^0 \to \Lambda_c(2595)^+ \ell^- \bar{\nu}_\ell$:

A. LCDAs model	Deserve hannal	Decay width	$\Gamma (\times V_{cb} ^2 \times 10^{-12} \text{ GeV})$	Branching fraction($\times 10^{-3}$)		
M _b LCDAS model	Decay channel	$j^P_{\Lambda_c}$	$j^A_{\Lambda_c}$	$j^P_{\Lambda_c}$	$j^A_{\Lambda_c}$	
	$\Lambda_b^0 \rightarrow \Lambda_c(2595)^+ e^- \bar{\nu}_e$	$0.247^{+0.356}_{-0.142}$	$2.336^{+2.441}_{-1.300}$	$0.918^{+1.324}_{-0.528}$	$8.692^{+9.082}_{-4.836}$	
Type I	$\Lambda_b^0 \to \Lambda_c(2595)^+ \mu^- \bar{\nu}_{\tau}$ $\Lambda_b^0 \to \Lambda_c(2595)^+ \tau^- \bar{\nu}_{\tau}$	$0.245_{-0.141}$ $0.046_{-0.027}^{+0.077}$	$2.325_{-1.293}^{+0.439}$ $0.468_{-0.249}^{+0.439}$	$0.913_{-0.526}^{+0.285}$ $0.172_{-0.102}^{+0.285}$	$8.649_{-4.811}$ $1.741_{-0.926}^{+1.632}$	
	$\Lambda_b^0 \rightarrow \Lambda_c(2595)^+ e^- \bar{\nu}_e$	$0.021^{+0.023}_{-0.011}$	$0.784^{+0.671}_{-0.391}$	$0.079^{+0.084}_{-0.043}$	$2.917^{+2.496}_{-1.453}$	
Type II	$\Lambda_b^0 \to \Lambda_c(2595)^+ \mu^- \nu_\mu$ $\Lambda_b^0 \to \Lambda_c(2595)^+ \tau^- \bar{\nu}_\tau$	$\begin{array}{c} 0.021 \substack{+0.025\\-0.011}\\ 0.004 \substack{+0.004\\-0.002} \end{array}$	$0.781^{+0.389}_{-0.389}$ $0.201^{+0.167}_{-0.098}$	$\begin{array}{c} 0.078 \substack{+0.034\\-0.042}\\ 0.015 \substack{+0.016\\-0.008} \end{array}$	$2.905^{+2.468}_{-1.448}$ $0.747^{+0.622}_{-0.365}$	
	$\Lambda_b^0 \rightarrow \Lambda_c(2595)^+ e^- \bar{\nu}_e$	$0.770^{+0.862}_{-0.434}$	$1.499^{+1.617}_{-0.838}$	$2.864^{+3.206}_{-1.615}$	$5.576^{+6.015}_{-3.117}$	
Type III	$\begin{array}{c} \Lambda_b^0 \to \Lambda_c(2595)^+ \mu^- \nu_\mu \\ \Lambda_b^0 \to \Lambda_c(2595)^+ \tau^- \bar{\nu}_\tau \end{array}$	$\begin{array}{c} 0.766\substack{+0.032\\-0.432}\\ 0.148\substack{+0.165\\-0.083}\end{array}$	$\begin{array}{c} 1.494\substack{+0.835\\-0.423\substack{+0.439\\-0.231}\end{array}$	$2.850^{+0.1608}_{-1.608}$ $0.550^{+0.615}_{-0.309}$	$5.558_{-3.106}^{+0.056}$ $1.572_{-0.861}^{+1.633}$	
	$\Lambda_b^0 \rightarrow \Lambda_c(2595)^+ e^- \bar{\nu}_e$	$0.025^{+0.028}_{-0.014}$	$0.754^{+0.759}_{-0.407}$	$0.092^{+0.104}_{-0.052}$	$2.804^{+2.824}_{-1.513}$	
Type IV	$\Lambda_b^o \to \Lambda_c(2595)^+ \mu^- \nu_\mu \\ \Lambda_b^0 \to \Lambda_c(2595)^+ \tau^- \bar{\nu}_\tau$	$0.024_{-0.014}^{+0.014}$ $0.005_{-0.003}^{+0.005}$	$0.751_{-0.405}^{+0.208}$ $0.214_{-0.113}^{+0.208}$	$0.091_{-0.052}$ $0.018_{-0.010}^{+0.020}$	$2.794_{-1.508}$ $0.795_{-0.421}^{+0.775}$	
	$\Lambda_b^0 \to \Lambda_c(2595)^+ e^- \bar{\nu}_e$	$0.111^{+0.102}_{-0.054}$	$6.418^{+3.253}_{-2.324}$	$0.414^{+0.380}_{-0.200}$	$23.875^{+12.101}_{-8.647}$	
Type V	$\begin{array}{c} \Lambda_b^0 \to \Lambda_c(2595)^+ \mu^- \bar{\nu}_\mu \\ \Lambda_b^0 \to \Lambda_c(2595)^+ \tau^- \bar{\nu}_\tau \end{array}$	$0.111^{+0.102}_{-0.053}$ $0.020^{+0.020}_{-0.010}$	${}^{6.380}_{-2.310}_{-2.310}_{1.049}_{-0.354}$	$0.412^{+0.378}_{-0.199}$ $0.075^{+0.073}_{-0.037}$	$23.735^{+12.024}_{-8.593}$ $3.903^{+1.824}_{-1.316}$	
PDG	$\Lambda_b^0 \to \Lambda_c(2595)^+ \ell^- \bar{\nu}_\ell$		_	7.	$9^{+4.0}_{-3.5}$	
	$\Lambda^0_b \rightarrow \Lambda_c(2595)^+ e^- \bar{\nu}_e$		_	17.3	3 ± 5.9	
LFQM	$\Lambda_b^0 \rightarrow \Lambda_c(2595)^+ \mu^- \bar{\nu}_\mu$		-	17.2	2 ± 5.8	
	$\Lambda_b^{\circ} \to \Lambda_c(2595) + \tau - \nu_{\tau}$		-	2.4	± 1.1	
CCOM	$\Lambda_b^0 \rightarrow \Lambda_c(2595)^+ e^- \bar{\nu}_e$		-	8.6	± 1.7	
CCQM	$\Lambda_{\tilde{b}}^{*} \rightarrow \Lambda_{c}(2595)^{+}\mu^{-}\bar{\nu}_{\mu}$ $\Lambda^{0} \rightarrow \Lambda_{c}(2595)^{+}\pi^{-}\bar{\nu}$		_	8.5	± 1.7 + 0.2	
	m_b / $m_c(2000)$ / ν_{τ}			1.1	± 0.2	

• Lepton flavor universality ratio $\mathcal{R}(\Lambda_c^*) = \mathcal{B}r(\Lambda_b^0 \to \Lambda_c^* \tau^- \bar{\nu}_{\tau})/\mathcal{B}r(\Lambda_b^0 \to \Lambda_c^* \mu^- \bar{\nu}_{\mu})$:

For $\Lambda_b^0 \to \Lambda_c^+ \ell^- \bar{\nu}_\ell$:

References	Exp. [1]	[2]	[3]	[4]	[5,6]	[7]	[8]	[9]	[10]	[11]	[12]	$j^1_{\Lambda_c}$	$j^2_{\Lambda_c}$
$\mathcal{R}(\Lambda_c^+)$	0.242	0.31	0.28	0.333	0.324	0.313	0.294	0.29	0.33	0.317	0.332	0.274	0.239

For $\Lambda_b^0 \to \Lambda_c(2595)^+ \ell^- \bar{\nu}_\ell$:

This work		Type I	Type II	Type III	Type IV	Type V	
$\mathcal{R}(\Lambda_c^*)$	$j^A_{\Lambda_c}\ j^P_{\Lambda_c}$	$\begin{array}{c} 0.201\substack{+0.011\\-0.011}\\ 0.188\substack{+0.016\\-0.008}\end{array}$	$\begin{array}{c} 0.257\substack{+0.005\\-0.003}\\ 0.189\substack{+0.001\\-0.000} \end{array}$	$\begin{array}{c} 0.253\substack{+0.007\\-0.005}\\ 0.193\substack{+0.001\\-0.000} \end{array}$	$\begin{array}{c} 0.285\substack{+0.006\\-0.005}\\ 0.193\substack{+0.001\\-0.001} \end{array}$	$\begin{array}{c} 0.164\substack{+0.006\\-0.004}\\ 0.182\substack{+0.006\\-0.002} \end{array}$	
References		[13]	[1	4]	[15]		
$\mathcal{R}(\Lambda_c^*)$	0.	14 ± 0.01	0.21, 0.22,	0.26, 0.31	0.13 ±	± 0.03	

PRL, 128:191803, 2022.
 PRD, 97:074007, 2018.
 PRD, 99:054020, 2019.
 PRD, 92:034503, 2015.
 PRL, 121:202001, 2018.

[6] PRD, 99:055008, 2019.
[7] PRD, 94:073008, 2016.
[8] PRD, 91:074001, 2015.
[9] PRD, 91:115003, 2015.
[10] PRD, 100:113004, 2019.

```
[11] JHEP, 06:118, 2021.
[12] PRD, 102:094023, 2020.
[13] PRD, 104:013005, 2021.
[14] PRC, 72:035201, 2005.
[15] PRD, 98:053003, 2018.
```

Introduction

- 2 Form factors of $\Lambda_b \to \Lambda_c^{(*)}$
 - Light-cone sum rule calculations of form factors
 - An overview of Λ_b LCDAs

3 Applications on semileptonic decays

4 Conclusions

Conclusions

- Form factors of $\Lambda_b \to \Lambda_c$ and $\Lambda_b \to \Lambda_c(2595)$ are calculated within QCD LCSRs.
- Both the positive parity and negative parity Λ_c and $\Lambda_c(2595)$ baryons are considered in the same LCSRs.
- Five different Λ_b baryon LCDAs models are used, and give us more insights on Λ_b LCDAs.
- Within the helicity form of semileptonic decay width, the branching ratios
 Λ_b → Λ_cℓν
 _ℓ and Λ_b → Λ_c(2595)ℓν
 _ℓ are also given in our work, and also R(Λ⁺_c) and
 R(Λ_c(2595)⁺).
- In order to know more precise phenomenology results from LCSRs, more information of hadron interpolating currents and LCDAs should be investigate more thorough.

▲□▶▲圖▶▲≣▶▲≣▶ = 差 - 釣ぬ⊙