第六届粒子物理天问论坛

Form factors and the light-cone distribution amplitudes of light pseudoscalar mesons

Jian Chai (柴健)

In collaboration with: Shan Cheng(程山)

Background and Motivation

- 2 Form factors and the light-cone distribution amplitudes of light pseudoscalar mesons
 - \bullet Electromagnetic form factor of π and K
 - Transition form factor of π and $\eta^{(\prime)}$

Background and Motivation

- Form factors and the light-cone distribution amplitudes of light pseudoscalar mesons
 - Electromagnetic form factor of π and K
 - Transition form factor of π and $\eta^{(\prime)}$

Background and Motivation

Measurements of F_{π} in different energy regions

- Spacelike data is available in the narrow region $q^2 \in [-2.5, -0.25] \text{GeV}^2$ Jefferson Lab 2006,2008, . . . , NA7 1996, CLEO 2005
- Timelike data is dominated by the resonant states, have not extend to large momentum transfers (perturbative QCD available)

Whole region of momentum transfers for electromagnetic form factor

- Mismatch between the QCD based calculation and the available data
- could be restored by employing the dispersion relation
- \bullet pQCD prediction at large $|q^2|$ is in dispensable

Background and Motivation

- 2 Form factors and the light-cone distribution amplitudes of light pseudoscalar mesons
 - \bullet Electromagnetic form factor of π and K
 - Transition form factor of π and $\eta^{(\prime)}$

Electromagnetic form factor of Pion

- † Dispersion Relation
- † Three scale factorization
- † Electromagnetic form factor of π from pQCD
- † Intrinsic transversal momentum distribution functions

Dispersion Relation

- spacelike data is available in the narrow region $q^2 \in [-2.5, -0.25] \text{GeV}^2$
- the mismatch destroys the direct extracting programme from $F_{\pi}(q^2 < 0)$
- timelike data $F_{\pi}(q^2 > 0)$ provides another opportunity

Standard dispersion relation:

$$\mathcal{F}_{\pi}^{pQCD}(q^2) = \frac{1}{\pi} \int_{s_0}^{\infty} ds \frac{\mathrm{Im} \mathcal{F}_P(s)}{s - q^2 - i\epsilon}, \quad q^2 > s_0$$

modulus squared dispersion integral:

 $[\breve{\mathbf{S}}.$ Cheng, A. Khodjamirian and A. V. Rusov, PRD 102 (2020) 074022

J. Chai, S. Cheng and J. Hua, EPJC 83 (2023) no.7, 556.]

$$\mathcal{F}_\pi^\mathrm{pQCD}(q^2) = \exp\left[\frac{q^2\sqrt{s_0-q^2}}{2\pi}\int\limits_{4m_\pi^2}^\infty ds \frac{\ln|\mathcal{F}_\pi(s)|^2}{s\,\sqrt{s-s_0}\,(s-q^2)}\right]\,.$$

$$|\mathcal{F}_{\pi}(s)|^2 = \Theta(s_{\text{max}} - s) |\mathcal{F}_{\pi,\text{Inter.}}^{\text{data}}(s)|^2 + \Theta(s - s_{\text{max}}) |\mathcal{F}_{\pi}^{\text{pQCD}}(s)|^2$$

Three scale factorization

• end-point singularities appear in exclusive QCD processes $m_{1,2}^2 \ll Q^2$, light-cone coordinate $p_2 = (\frac{Q}{\sqrt{2}}, 0, 0_{\mathrm{T}}), p_3 = (0, \frac{Q}{\sqrt{2}}, 0_{\mathrm{T}}),$ (anti-)valence quarks: $k_2 = x_2 p_2, \bar{k}_2 = \bar{x}_2 p_2$

$$\begin{array}{l} \phi \propto u(1-u), \quad m_0^{\pi} \phi^{P,\sigma} \propto m_0^{\pi} \\ \propto \sum_t \int du_1 \, du_2 \, \kappa_t(u_i) \frac{\alpha_s(\mu) \phi_1^t(u_1) \phi_2^t(u_2)}{u_1 u_2 \, Q^2 u_2 \, Q^2} \end{array}$$

- pick up k_T in the internal propagators $\mathcal{M} \propto \sum_{t=2,3,4} \int du_1 du_2 dk_1 T dk_2 T K_t(u_i) \frac{\alpha_s(\mu) \phi_1^t(u_1) \phi_2^t(u_2)}{u_1 u_2 Q^2 (k_1 T k_2 T)^2}$
- end-point singularity at leading and subleading powers $\mathcal{H} \propto \frac{\alpha_s(\mu)}{u_1 u_2 Q^2 k_T^2} \sim \frac{\alpha_s(\mu)}{u_1 u_2 Q^2} \frac{\alpha_s(\mu) k_T^2}{(u_1 u_2 Q^2)^2} + \cdots$
- the power suppressed TMD terms becomes important at the end-points

k_T Factorization Soft+colinear divergence appears double logarithmic term $\alpha_s ln^2(Q/k_T)$

borrowed from H.N Li

consider contribution from the iTMD

$$\begin{split} \frac{f_{\pi}m_{0}^{P}}{2\sqrt{6}}\phi^{p}(u,\mu) &= \int \frac{d^{2}\vec{k}_{T}}{16\pi^{3}}\phi_{2p}^{p}(u,\vec{k}_{T}) + \int \frac{d^{2}\vec{k}_{T1}}{16\pi^{3}}\frac{d^{2}\vec{k}_{T2}}{4\pi^{2}}\phi_{3p}^{p}(u,\vec{k}_{T1},\vec{k}_{T2}). \\ \psi_{2p}^{p}(u,\vec{k}_{T}) &= \frac{f_{\pi}m_{0}^{P}}{2\sqrt{6}}\phi_{2p}^{p}(u,\mu)\Sigma(u,\vec{k}_{T}), \\ \psi_{3p}^{p}(u,\vec{k}_{1T},\vec{k}_{2T}) &= \frac{f_{\pi}m_{0}^{P}}{2\sqrt{6}}\eta_{3\pi}\phi_{3p}^{p}(u,\mu)\Sigma'(\alpha_{i},\vec{k}_{1T},\vec{k}_{2T}). \end{split}$$

Intrinsic transversal momentum distribution functions

Two-particlie Fock state

$$\Sigma(u, \mathbf{k}_T) = 16\pi^2 \beta^2 g(u) \operatorname{Exp}\left[-\beta^2 k_T^2 g(u)\right], g(u) = 1/(u\bar{u})$$

$$\begin{split} \int \frac{d^2k_\perp}{16\pi^3} \Sigma\left(u,\mathbf{k}_T\right) &= 1\\ \beta_\pi^2 &= \frac{1}{8\pi^2f_\pi^2\left(1 + a_2^\pi + a_4^\pi + \cdots\right)} \end{split}$$

$$\psi\left(u,\mathbf{b}_{T}\right) = \frac{f_{\pi}}{2\sqrt{6}}\varphi(u,\mu)\hat{\Sigma}\left(u,\mathbf{b}_{T}\right), \hat{\Sigma}\left(u,\mathbf{b}_{T}\right) = 4\pi \operatorname{Exp}\left[-\frac{b_{T}^{2}}{4\beta^{2}g(u)}\right]$$

Three-particle Fock state

$$\psi_{3p}\left(u,\mathbf{k}_{1T},\mathbf{k}_{2T}\right) = \frac{f_{\pi}m_{0}^{\mathcal{P}}}{2\sqrt{6}}\varphi_{3p}(u,\mu)\int_{0}^{u}d\alpha_{1}\int_{0}^{\bar{u}}d\alpha_{2}\frac{\Sigma'\left(\alpha_{i},\mathbf{k}_{1T},\mathbf{k}_{2T}\right)}{1-\alpha_{1}-\alpha_{2}}$$

three-particle iTMD Gaussian function is:

$$\Sigma'(\alpha_i, \mathbf{k}_{1T}, \mathbf{k}_{2T}) = \frac{64\pi^3 \beta'^4}{\alpha_1 \alpha_2 (1 - \alpha_1 - \alpha_2)} \exp\left[-\beta'^2 \left(\frac{k_{1T}^2 + \frac{k_{2T}^2}{\alpha_1} + \frac{(k_{1T} + k_{2T})^2}{1 - \alpha_1 - \alpha_2}}{1 - \alpha_1 - \alpha_2}\right)\right]$$
$$\hat{\Sigma}'(u, \mathbf{b}_1, \mathbf{b}_2) = 4\pi Exp\left[-\frac{2\alpha_3 (b_1^2 + b_2^2) + (\alpha_1 + \alpha_2)(b_1 - b_2)^2}{16\beta'^2}\right]$$

Electromagnetic form factor: π

LO feynman diagrams of spacelike(left) and timelike(right) form factors

Invariant amplitudes of EM current can be written as:

$$\langle \pi^{-}(p_2)|j_{\mu,q}^{\rm em}|\pi^{-}(p_1)\rangle = \langle \pi^{-}(p_2)|\left(\bar{u}\gamma_{\mu}u - \bar{d}\gamma_{\mu}d\right)|\pi^{-}(p_1)\rangle \equiv e_q(p_1 + p_2)\mathcal{F}_{\pi}(Q^2),$$

Separating the short and long distance interactions, written in the factorizable form: $\langle \pi^-(p_2)|J_\mu^{\rm e.m.}|\pi^-(p_1)\rangle =$

$$\oint dz_1 dz_2 H_{\gamma\beta\alpha\delta}^{ijkl}(z_2, z_1) \langle \pi^-(p_2) \middle| \left\{ \overline{d}_{\gamma}(z_2) \exp\left(ig_s \int_0^{z_2} d\sigma_{\nu'} A_{\nu'}(\sigma)\right) u_{\beta}(0) \right\}_{kj} \middle| 0 \rangle_{\mu_t} \\
\langle 0 \middle| \left\{ \overline{u}_{\alpha}(0) \exp\left(ig_s \int_{z_1}^0 d\sigma_{\nu} A_{\nu}(\sigma)\right) d_{\delta}(z_1) \right\}_{ij} \middle| \pi^-(p_1) \rangle_{\mu_t}$$

Different twists from different spin structures:

$$4q_{1\alpha}q_{2\delta}=\left\{q_{1}q_{2}+\gamma_{5}\left(q_{2}\gamma_{5}q_{1}\right)+\gamma^{\rho}\left(q_{2}\gamma_{\rho}q_{1}\right)+\gamma_{5}\gamma^{\rho}\left(q_{1}\gamma_{\rho}\gamma_{5}q_{1}\right)+\frac{1}{2}\sigma^{\rho\tau}\left(q_{2}\sigma_{\rho\tau}q_{1}\right)\right\}_{\delta\alpha}.$$

Pion LCDAs

- Three sources of high twist LCDAs
 - † "bad" components in WFs in particular of those with " wrong" spin projection
 - † transversal motion of $q(\bar{q})$ in the leading twist components given by the integrals with additional factors of k_1^2
 - † higher Fock states with additional g and $q\bar{q}$ pairs
- higher twist contributions to exclusive QCD processes are commonly power suppressed $\mathcal{O}(1/Q)$
- but twist 3 contribution are dominate in the π , K evolved processes due to chiral enhancement $\mathcal{O}(m_0/(x_iQ))$

$$\chi^2 = \sum_{i=1}^{11} \frac{\left[\mathcal{F}_\pi^{\mathrm{DR2}}(Q_i^2) - \mathcal{F}_\pi^{\mathrm{pQCD}}(Q_i^2)\right]^2}{\left[\delta \mathcal{F}_\pi^{\mathrm{DR2}}(Q_i^2)\right]^2}$$

$$\begin{split} \mathcal{F}^{\text{em}}_{\pi}(Q^2) &= (m_0^{\pi})^2 \mathcal{F}^{\text{em}}_{\pi,1}(Q^2) + m_0^{\pi} \mathcal{F}^{\text{em}}_{\pi,2}(Q^2) + \mathcal{F}^{\text{em}}_{\pi,3}(Q^2) \\ &+ m_0^{\pi} a_2^{\pi} \mathcal{F}^{\text{pQCD}}_{\pi,4}(Q^2) + a_2 \pi \mathcal{F}^{\text{em}}_{\pi,5}(Q^2) + (a_2^{\pi})^2 \mathcal{F}^{\text{em}}_{\pi,6}(Q^2) \end{split}$$

Electromagnetic form factor of Pion

Electromagnetic form factor of Pion

- the precise pQCD calculation
- modular dispersion relation with e^+e^- annihilation data
- a comprehensive description of $F_{\pi}(q^2)$ in the whole kinematics

- the slight derivation is still there despite its sensitive to iTMD in the small q^2
- \bullet form factor of K meson is being studied

Transition form factor of π

 $F_{\pi\gamma\gamma^\star}$ is the theoretically most clean observable $\varpropto a_n^\pi$

- Model-I [Brodsky, Teramond 0707.3859, RQCD 1903.08038]
- Model-II [SC, Khodjamirian, Rosov 2007.05550]
- \bullet Model-III [Mikhailov, Pimikov, Stefanis 1604.06391]

- † NLO pQCD calculation with the iTMD contribution, modification in the small and intermediate regions is significant
- † TFF of $\eta^{(\prime)}$ are being studied

Background and Motivation

- Form factors and the light-cone distribution amplitudes of light pseudoscalar mesons
 - Electromagnetic form factor of π and K
 - Transition form factor of π and $\eta^{(\prime)}$

Summary

Form factors and the light-cone distribution amplitudes of light pseudoscalar mesons:

- Electromagnetic form factor of π and K
 - † in the light-cone dominated processes, hadron structure is well studied in terms of LCDAs † a comprehensive studies of $F_{\pi}(q^2)$ with pQCD calculation and modular dispersion relation
 - † help to reveal inner structure of pion (moments, iTMD)
- Transition form factor π and $\eta^{(\prime)}$ settle down the "fat pion" issue in $F_{\pi\gamma\gamma^*}$

[Christoph 1810.00654[hep-ex]]

Thank you for your patience...