

Gaseous detector chapter towards CEPC TDR

Huirong Qi and Linghui Wu Weekly meeting of CEPC TDR Group, August 20, 2024

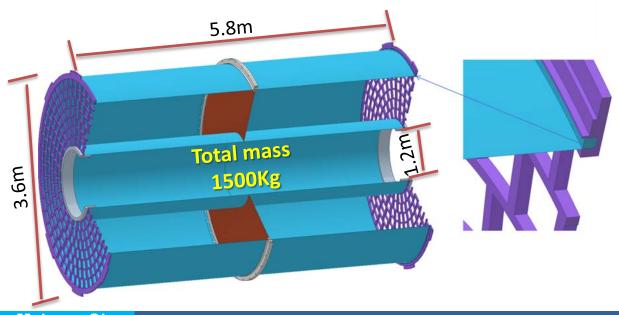
- Updated gaseous detector part in TDR
- Updated design of TPC for TDR
- Planning presentations for CEPC2024

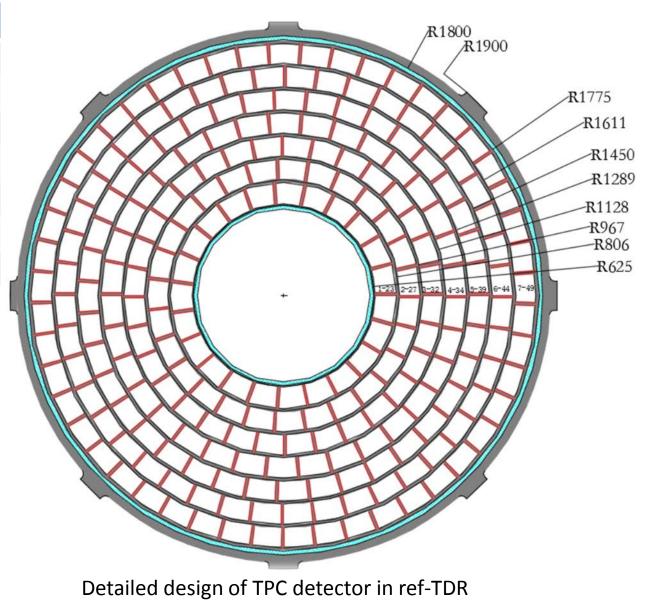
Updated gaseous detector part in TDR

• **Core of the research team** (10 staffs + TPC group)

- IHEP: Huirong Qi, Linghui Wu, Guang Zhao, Mingyi Dong, Yue Chang, Xin She, Jinxian Zhang, Junsong Zhang
- Tsinghua: Zhi Deng, Canwen Liu, Guanghua Gong, Feng He, Jianmeng Dong, Yanxiao Yang
- **Collaboration of the research team** (6 staffs +10 students + 5 LCTPC members)
 - TPC: CIAE, Shandong University, Nankai University, Zhengzhou University and Liaoning University / DC: Wuhan University, Jilin University
 - TPC and DC: DRD1 collaboration and LCTPC collaboration

Chapter 5 Gaseous trackers

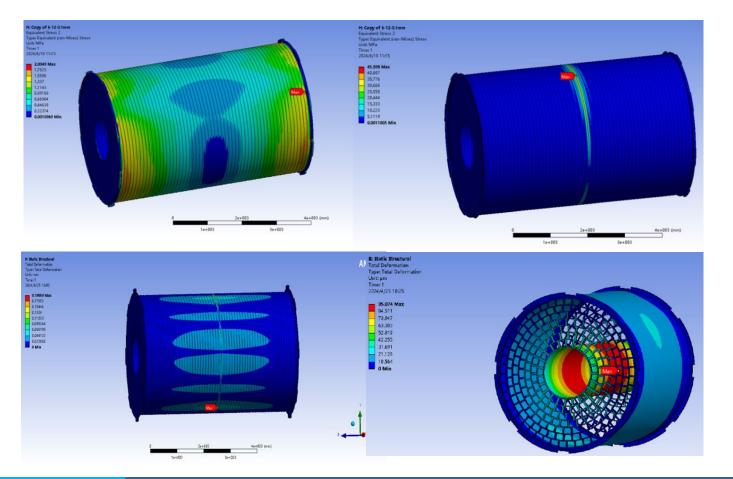

5.1	Physic	Physics requirements and detection technology		
	5.1.1	Physics requirements of Higgs and Tera-Z		
	5.1.2	Technology choice and the baseline track detector		
5.2	Pixelated readout TPC detection			
	5.2.1	TPC detector and readout electronics		
	5.2.2	Mechanical and cooling design		
	5.2.3	Challenges and critical R&D		
	5.2.4	Detector modules toward the validation prototype		
5.3	Performance of TPC tracker			
	5.3.1	Overall of the simulation framework		
	5.3.2	Spatial resolution and PID performance		
	5.3.3	Improvement using the machine learning algorithm		
5.4	Alternative track detector of Drift Chamber in Tera-Z			
	5.4.1	PID for high luminosity Z pole at 2T		
	5.4.2	Performance and critical R&D		
5.5	Cost e	stimation		



Shared editing chapter from overleaf

Updated design of TPC mechanics for TDR

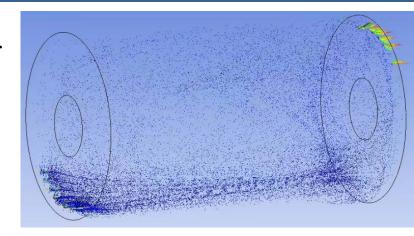
TPC detector	Key Parameters	
Modules per endcap	248 modules /endcap	
Module size	206mm×224mm×161mm	
Geometry of layout	Inner: 1.2m Outer: 3.6m Length: 5.9m	
Voltage of Cathode	- 62,000 V	
Operation gases	T2K: Ar/CF4/iC4H10=95/3/2	
Total drift time	34µs @ 2.75m	
Pixelated detector	Pixelated Micromegas	

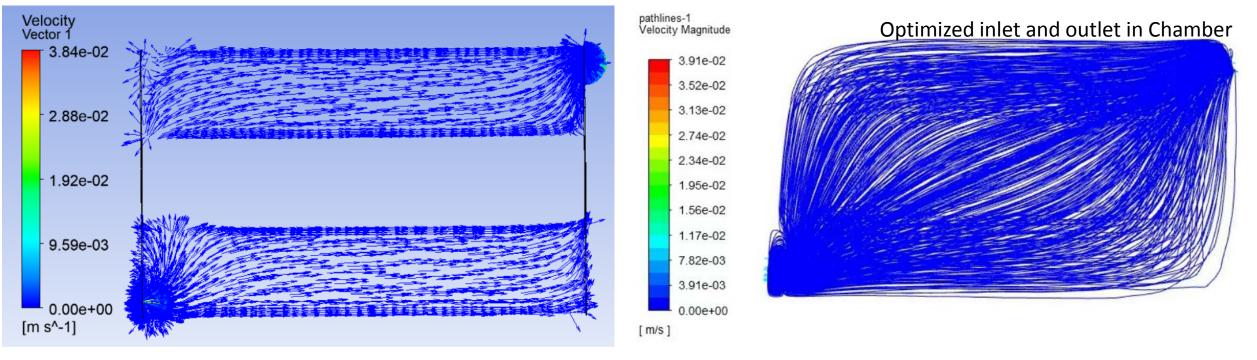


Huirong Oi

Updated ultra-light barrel and FEA analysis

- Consideration of new Carbon Fiber barrel instead of the honeycomb barrel (~2% X₀)
- **Ultra-light material** of the TPC barrel (QM55 CF) : $0.59\% X_0$ in total, including
 - FEA preliminary calculation: 0.2mm carbon fibber barrel can tolerant of LGAD OTK (100Kg)
- Optimization of the connection back frame of the endcap (on going, MDI meeting this week)

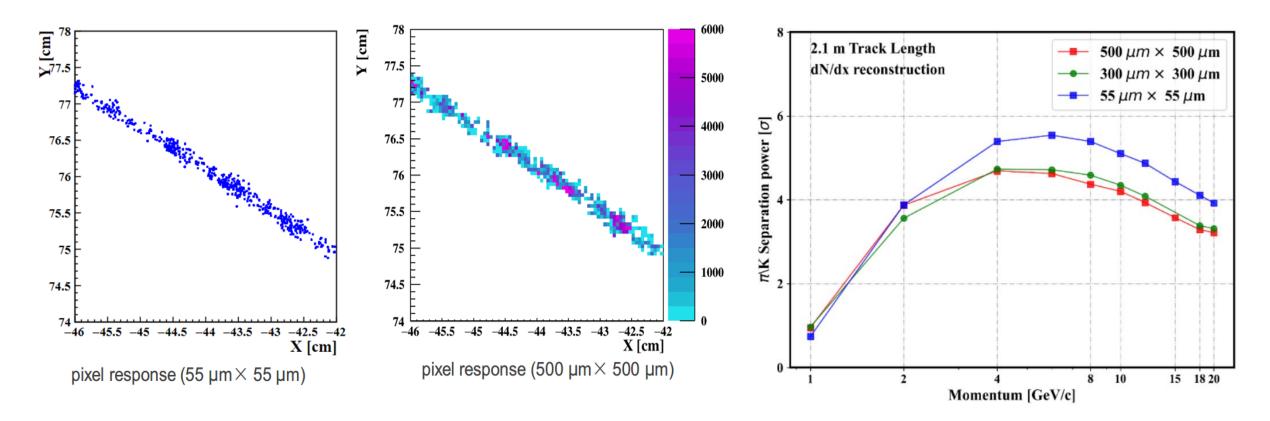

Material budget of TPC barrel			
Layer of the barrels	D[cm]	X ₀ [cm]	d/X ₀ [%]
Copper shielding	0.001	1.45	0.07
CF outer barrel	0.020	25.28	0.08
Mirror strips	0.003	1.35	0.19
Polyimide substrate	0.005	32.65	0.02
Field strips	0.003	1.35	0.19
CF inner barrel	0.010	25.28	0.04
Sum of the r	0.59		


Low material of the TPC endcap

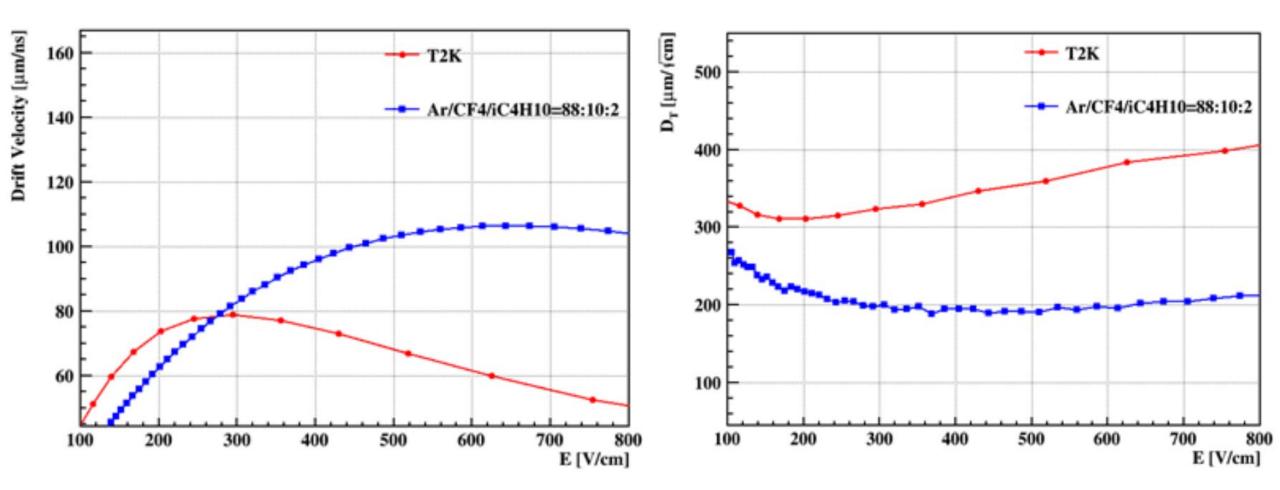
15%X ₀	in total, including
Readout plane, front-end-electronics	5 4%
Cooling	2%
Power cables	9%

Optimization of Gas flow in Chamber

- Optimized design gas uniformity of **99% or more** in large TPC chamber
 - 8 Ø10mm gas inlets + 8 Ø10mm gas outlets (opposite, 90°/endcap)
 - Working gas flow: 300 500 mL/min
 - Online monitoring system: O₂ (ppm) and water H₂O (ppm)
 - Friendly the gases recycle system and mesh cathode considered



Simulation of gas flow and uniformity distribution in TPC Chamber


Updated high granularity readout TPC

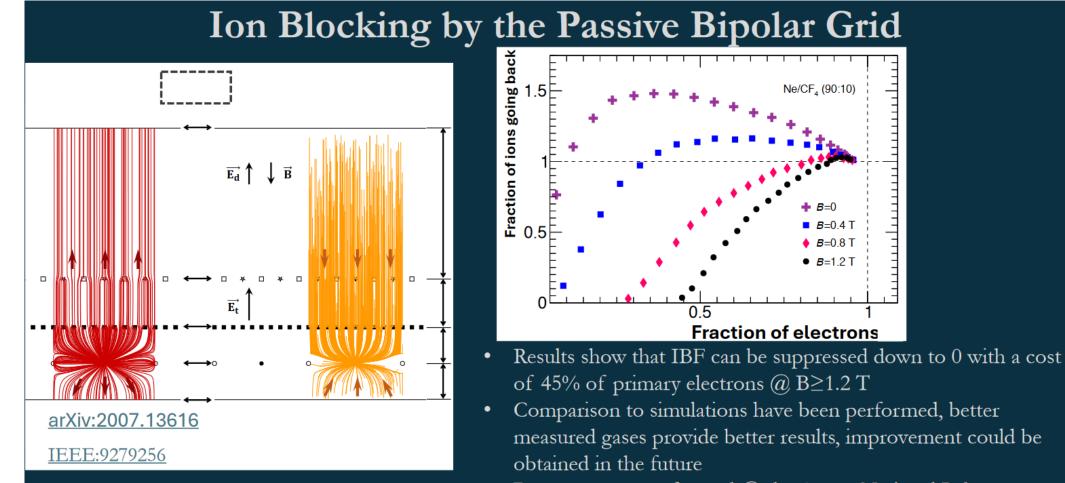
- Timepix ($55\mu m \times 55\mu m$) readout TPC prototype has been validation four times on DESY beams
 - Power consumption: 2W/cm²; Low power mode: 1W/cm² (Too high power for pixelated readout)
- Simulation results showed that readout size can be optimized at 300µm-500µm
 - Reasonable readout channels and power consumption need to be studied
 - Focused on 100mW/cm² and 500μm readout for CEPC refTDR (2-phase CO₂ cooling OK!)

Fast simulation of the mixture working gases

- Fast drift velocity **at >450V/cm**
- Lower D_T diffusion

Passive ions gating using GridPIX at CPAD

• High granularity GridPix R&D


GridPix with Pasive Bipolar Grid in high Magnetic Field

Evgeny Shulga¹ Babak Azmoun² Prakhar Garg³ Thomas Hemmick¹ Jochen Kaminski⁴ Alexander Milov⁵ Nikolai Smirnov⁴ ¹Department of Physics and Astronomy, Stony Brook University, USA ⁴ ²Physics Department, Brookhaven National Laboratory, USA ⁵ ³Department of Physics, Yale University, USA ⁶ ⁴Institute of Physics, University of Bonn, Germany ⁷ ⁵Department of Particle Physics and Astrophysics, Weizmann Institute of Science, Israel ⁸

https://indico.fnal.gov/event/65448/

Passive ions gating using GridPIX at CPAD

• High granularity GridPix R&D

- Beam test was performed @ the Argon National Laboratory to increase magnetic field
- Garfield++ simulations have shown good results for Ar/CH4

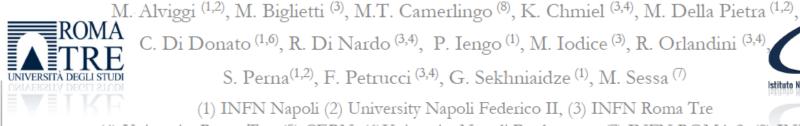
Presentations and Posters for CEPC2024 in Hangzhou (planning)

- Just only from CEPC gaseous track study group at IHEP and internal University
 - Based on previous CEPC meeting programme

	Presenter	Туре	Draft title	Planning session
1	Huirong Qi	Oral	Status of CEPC TPC towards TDR	Gaseous track detector
2	Mingyi Dong	Oral	Status of CEPC DC	Gaseous track detector
3	Guang Zhao	Oral	Machine leaning for dN/dx reconstruction	Machine learning session
4	Zhi Deng	Oral	Low power readout ASIC R&D	Electronics session
5	Xin She	Oral	BK analysis at Tera-Z	MDI session
6	Yue Chang	Oral	Pixelated readout gas detector for PID	PID session
7	Canwen Liu	Poster	Status of FEE ASIC for TPC	Gaseous track detector
8	Jinxian Zhang	Poster	High granularity readout TPC at Tera-Z	MDI session
9	USTC (TBD)	Oral	MPGD R&D	
10	SDU (TBD)	Oral	IBF R&D	
11	CEIA (TBD)	Oral	Micromegas R&D	\
12	Student	Poster	/	\

	主要分项	机柜	需求描述	机箱
1	高压需求	一个机柜	每个module一路高压,共需要500路	3个9U的SHV机箱
2	阴极高压	合用机柜	一路,10万伏以内,电流5mA以内,	一个6U机箱
3	电子学低压LV	一个机柜	+-24V、+-12V等 由于功率的需求,需定制	需要较多,定制
4	气体成分在线监 测及回收	一个机柜	气体成分在线监测及气体回收	研制、定制
5	温湿度在线监测、 流量监测	一个机柜	温湿度在线监测、流量监测	研制、定制

Many thanks!


Some pixelated readout TPC R&D at ICHEP

High granularity small-pad resistive Micromegas R&D

High granularity small-pad resistive Micromegas for high-rate environment

Roberto Di Nardo

on behalf of the RHUM collaboration:

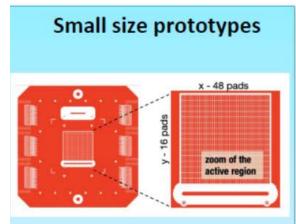
C. Di Donato^(1,6), R. Di Nardo^(3,4), P. Iengo⁽¹⁾, M. Iodice⁽³⁾, R. Orlandini^(3,4)

S. Perna^(1,2), F. Petrucci^(3,4), G. Sekhniaidze⁽¹⁾, M. Sessa⁽⁷⁾

uto Nazionale di Fisica Nuclear

(1) INFN Napoli (2) University Napoli Federico II, (3) INFN Roma Tre

(4) University Roma Tre, (5) CERN, (6) University Napoli Parthenope, (7) INFN ROMA 2, (8) INFN Bari

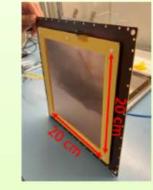


XLII International Conference on High Energy Physics July 18th - 24th 2024 Prague (Czech Republic)

Some pixelated readout TPC R&D at ICHEP2024

• Smaller pad size and short drift length (5mm)

The prototypes size evolution

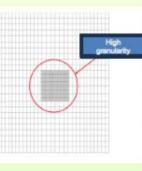


Several resistive layout tested

Active area: 4.8 x 4.8 cm² active region Anode plane pad size: 0.8 x 2.8 mm² → 768 pads

48 pads – 1 mm pitch ("x") 16 pads – 3 mm pitch ("y")

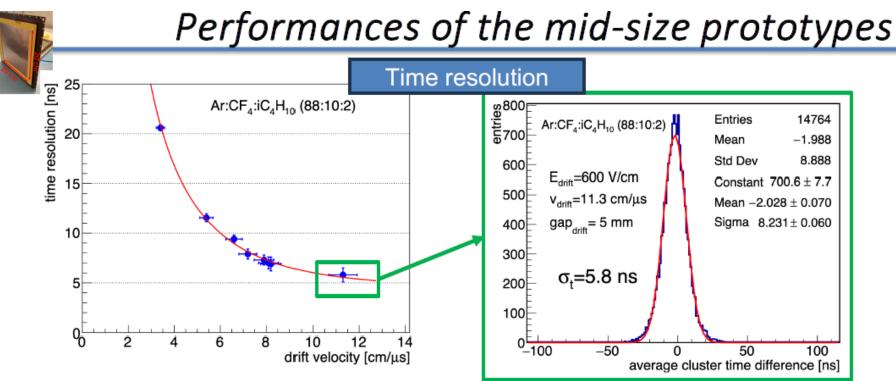
Medium size prototypes


Two detectors: Paddy400-1 & Paddy400-2

Active area : 20 cm x 20 cm (partial readout in central part, ~40%) Anode plane pad size: 1x8mm² → 4800 pads

 Tests performed also in "common cathode" configuration

Large size prototypes



Paddy-2000 - "The Big one"

Active area : 50 cm x 40 cm Anode plane pad size: Central part 1x8mm² → 512 pads Surrounding area 10x10mm² → 2048 pads

Some pixelated readout TPC R&D at ICHEP2024

• High granularity small-pad resistive Micromegas R&D

- Evaluated by computing the time difference between on-track clusters in two different chambers
 - Common cathode configuration
- Fast gas mixture Ar:CF4:iC4H10 (88:10:2) exploited
- Drift velocities at various E_{drift} measured using the hit time distributions
 - In agreement with simulation
- Measured resolution for the medium size prototype \sim 6ns at v_{drift} \sim 11 cm/µs