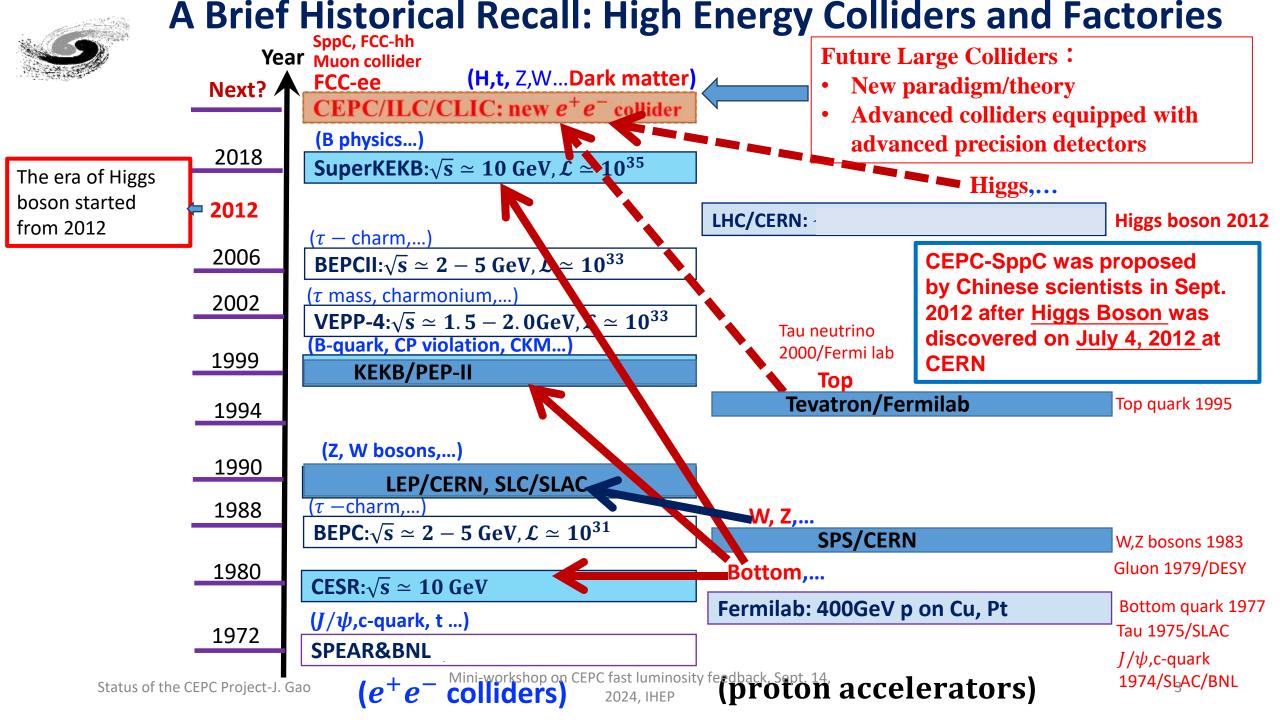
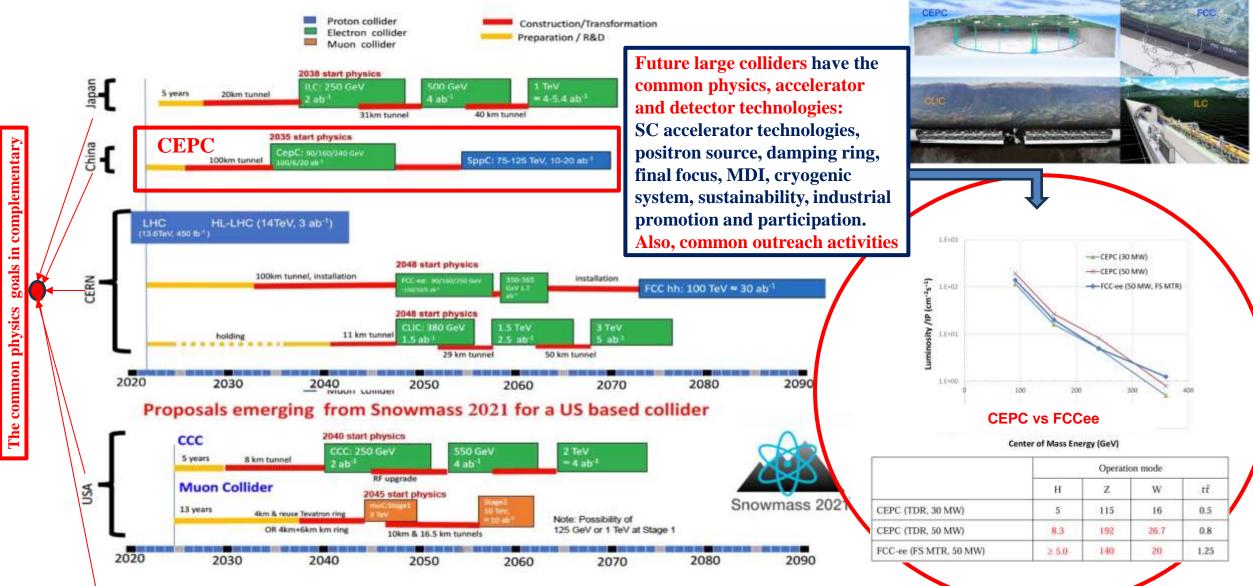


Status of the CEPC Project

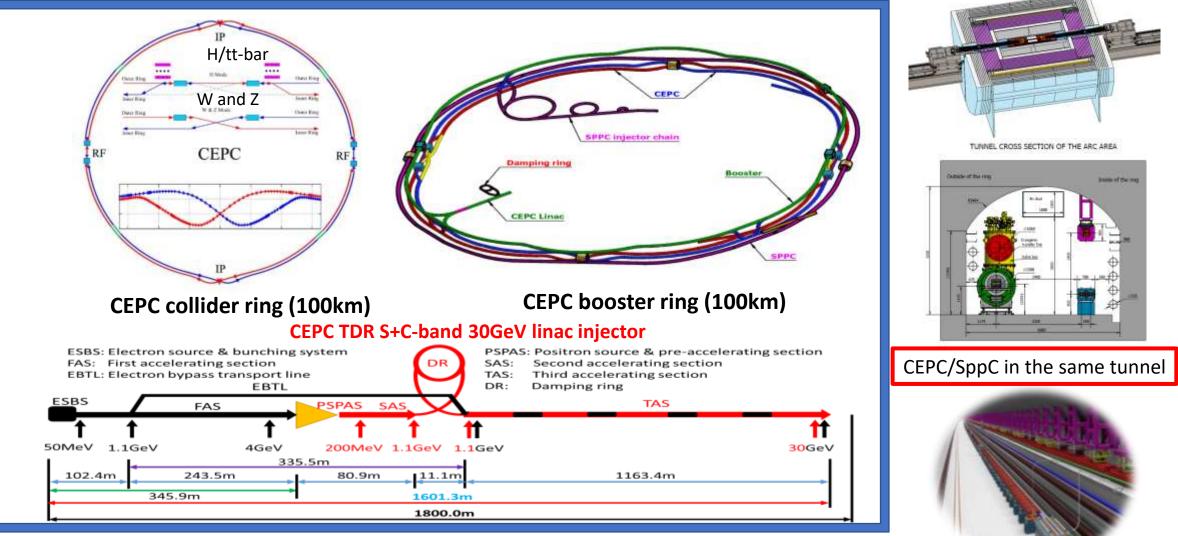
-Towards construction through EDR Phase


J. Gao

IHEP



- Introduction
- CEPC EDR goals, plans and development towards construction
- CEPC accelerator EDR progress status based on TDR completion
- CEPC Detector R&D status
- CEPC industrial preparation and international collaborations
- Summary


Worldwide High Energy Physics Goal Timelines and Common Efforts

HALHF was proposed in 2023 as a Higgs factory based on plasma accelerator technology

CEPC Higgs Factory and SppC Layout in TDR/EDR

CEPC as a Higgs Factory: H, W, Z, upgradable to ttbar, followed by a SppC (a Hadron collider) ~125TeV 30MW SR power per beam (upgradable to 50MW) , high energy gamma ray 100Kev~100MeV

Mini-workshop on CEPC fast luminosity feedback, Sept. 14, 2024, IHEP

CEPC Accelerator System Parameters in TDR/EDR

Linac

Booster

Collider

Parameter	Symbol	Unit	Baseline			tt	H		W		Z		Higgs	Z	W	tī		
	Symbol	Cint	Dasenne			Off axis injection	Off axis C injection in		Off axis injection	Off axis	injection	Number of IPs	2					
Energy	E_{e}/E_{e+}	GeV	30	Circumfer.	km				100	1		Circumference (km)	100.0					
	C- C1			Injection energy	GeV				30			SR power per beam (MW)						
Repetition rate	f_{rep}	Hz	100	Extraction	GeV	180	120		80	4	5.5	Energy (GeV)	120	45.5	80	180		
Bunch				energy	UE V					2070		Bunch number	268	11934	1297	35		
number per			1 or 2	Bunch number Maximum		35	268 2	261+7	1297	3978	5967	Emittance $\varepsilon_r/\varepsilon_v$ (nm/pm)	0.64/1.3	0.27/1.4	0.87/1.7	1.4/4.7		
pulse				bunch charge	nC	0.99	0.7	20.3	0.73	0.8	0.81	Beam size at IP σ_r / σ_v (um/nm)	14/36	6/35	13/42	39/113		
Bunch		nC	1.5 (3)	Beam current	mA	0.11	0.94	0.98	2.85	9.5	14.4	x ,	14/30	0/33	13/42	39/113		
charge Energy		пс	1.5 (5)	SR power	MW	0.93		1.66	0.94	0.323	0.49	Bunch length (natural/total) (mm)	2.3/4.1	2.5/8.7	2.5/4.9	2.2/2.9		
Energy	<i>.</i>		1.5×10 ⁻³	Emittance	nm	2.83	1.26		0.56	0.	19	Beam-beam parameters ξ_r / ξ_v	0.015/0.11	0.004/0.127	0.012/0.112	0.071/0.1		
spread	σ_E		1.5×10	RF frequency	GHz GV	9.7	0.17		1.3	0	46		0.013/0.11			0.071/0.1		
E urittanaa			6.5	RF voltage Full injection	GV		2.17		0.87			RF frequency (MHz)	650					
Emittance	\mathcal{E}_r	nm		from empty	h	0.1	0.14	0.16	0.27	1.8	0.8	Luminosity per IP (10 ³⁴ cm ⁻² s ⁻¹)	5.0	115	16	0.5		
(1) ()	Linac	2) E	③ Booster -180GeV	5 7	/	ollider		9 (9) (10))	ios: Hi) (1 1) (years, Z 3 years, W 1 years, Z 3 years, W 1 years, Z 3 years, W 1	gn Repo FDR Rrd (rd	ort (TDF =refere	R) inclu			

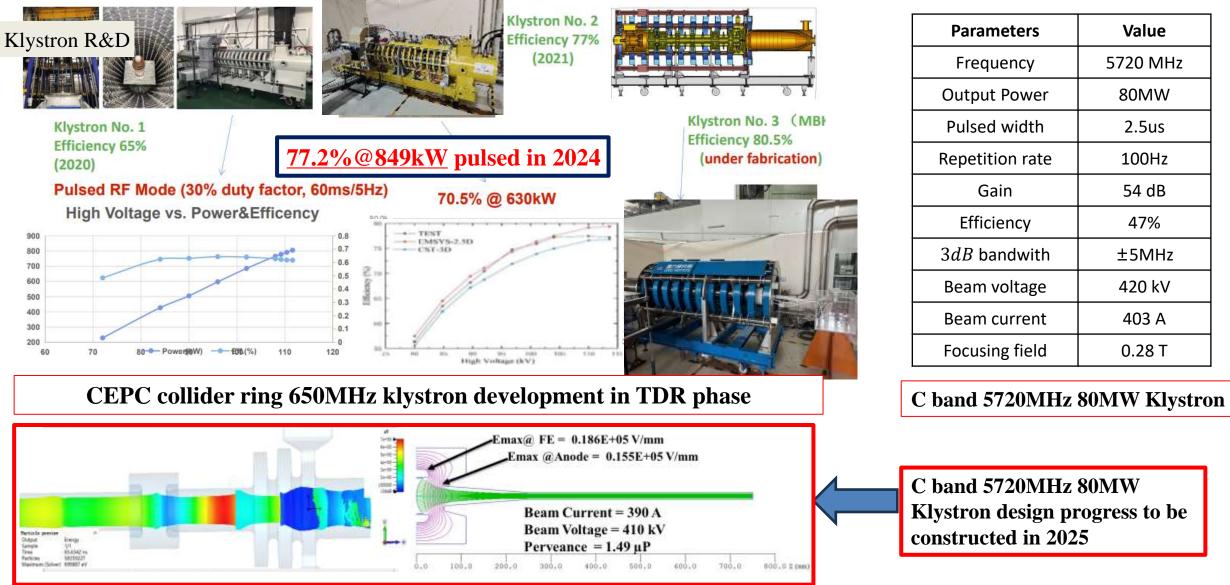
CEPC Key Technology R&D Status in TDR

Specification Met Prototype	Accelerator	Fraction
Specification Met Manufactured	Vagnets	27.3%
	🗸 Vacuum	18.3%
	RF power source	9.1%
	Mechanics	7.6%
Booster	🗸 Magnet power supplies	7.0%
Hectron Bi	SC RF	7.1%
Collider	Cryogenics	6.5%
Position Riay	Linac and sources	5.5%
Linac Linac	Instrumentation	5.3%
	Control	2.4%
	Survey and alignment	2.4%
	Radiation protection	1.0%
	SC magnets	0.4%
Key technology R&D in TDR spans all component lists in CEPC CDR	Damping ring	0.2%

CEPC Booster 1.3 GHz 8 x 9-cell High Q Cryomodule

CEPC booster 1.3 GHz SRF R&D and industrialization in synergy with CW FEL projects.

Parameters	Horizontal test results	CEPC Booster Higgs Spec	LCLS-II, SHINE Spec	LCLS-II-HE Spec
Average usable CW E_{acc} (MV/m)	23.1	3.0×10¹⁰ @	2.7×10 ¹⁰ @	2.7×10 ¹⁰ @
Average Q ₀ @ 21.8 MV/m	3.4×10 ¹⁰	21.8 MV/m	16 MV/m	20.8 MV/m



Status of the CEPC Project-J. Gao

Mini-workshop on CEPC fast luminosity feedback, Sept. 14, 2024, IHEP

CEPC Accelerator Main Technology Development: Klystrons

Value

5720 MHz

80MW

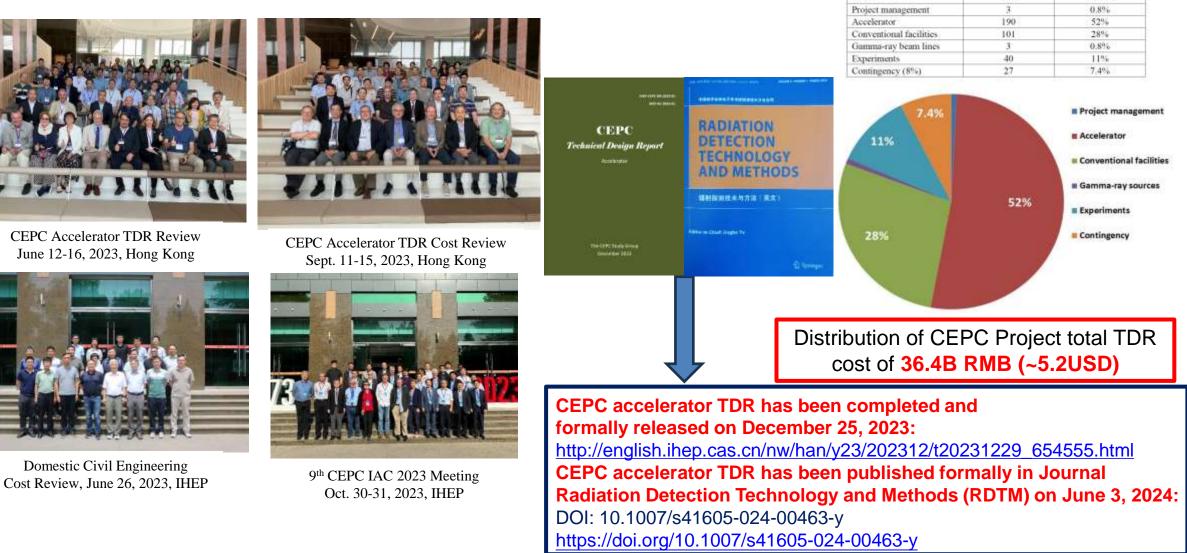
2.5us

100Hz

54 dB

47%

±5MHz


420 kV

403 A

0.28 T

CEPC Accelerator International TDR Review and Cost Review June 12-16, and Sept. 11-15, 2023, in HKUST-IAS, Hong Kong

Mini-workshop on CEPC fast luminosity feedback, Sept. 14, 2024, IHEP

Table 12.1.2: CEPC project cost breakdown. (Unit: 100,000,000 yuan)

364

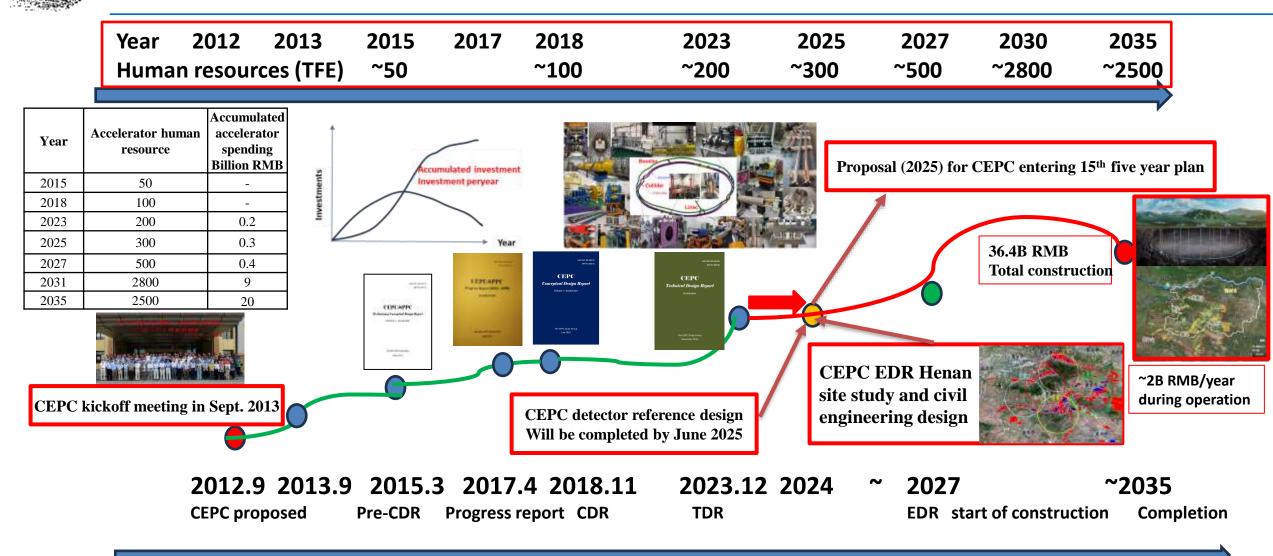
100%

Total

S

CEPC Engineering Design Report (EDR) Goal

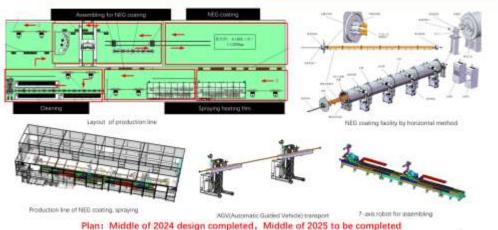
2012.9	2015.3	2018.11	2023.10	2025	2027	15 th five year plan
CEPC proposed	Pre-CDR	CDR	TDR	CEPC Proposal CEPC Detector reference design	EDR	Start of construction


CEPC EDR Phase General Goal: 2024-2027

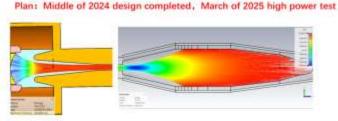
After completion CEPC accelerator TDR in 2023, CEPC accelerator will enter into the Engineering Design Report (EDR) phase (2024-2027), which is also the preparation phase with the aim for CEPC proposal to be presented to and selected by Chinese government around 2025 for the construction start during the "15th five year plan (2026-2030)" (for example, around 2027) and completion around 2035 (the end of the 16th five year plan).

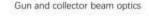
CEPC EDR includes accelerator and detector (TDRrd) CEPC detector TDR reference design (rd) will be released by June 30, 2025

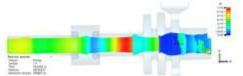
CEPC Accelerator EDR goals, scope and the working plan (preliminary) of 35 WGs summarized in a documents of 20 pages, EDR progress be reviewed by IARC in Sept. 18-20, 2024

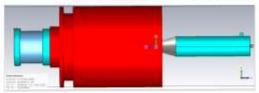

CEPC Milestones, Timeline and Human Resources

CEPC Accelerator Development in EDR-1

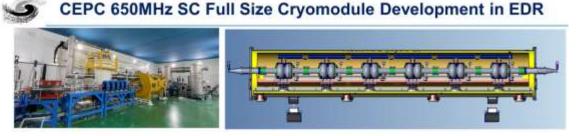




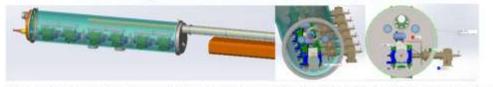



CEPC 80MW C-band Klystron Development in EDR

Perameters	Value
Frequency	5712 MHz
Output Power	BOMW
Drive power	350W
Gain	54 d8
Efficiency	47%
3d8 bandwith	±10MHz
Beam voltage	420 kV
Beam current	403 A
Focusing field	~0.27 T maximum

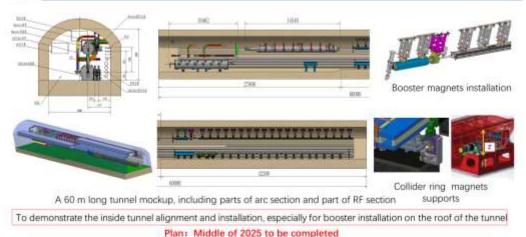


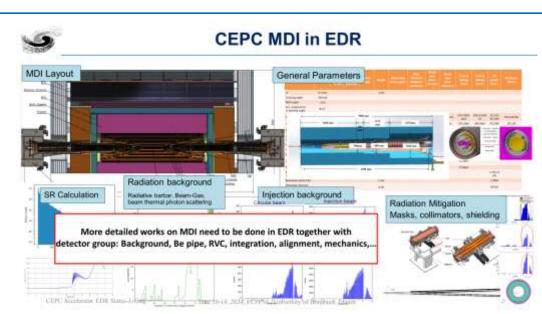
Beam dynamic with CST code


Mechanical configuration

CEPC Accelerator Development in EDR-2

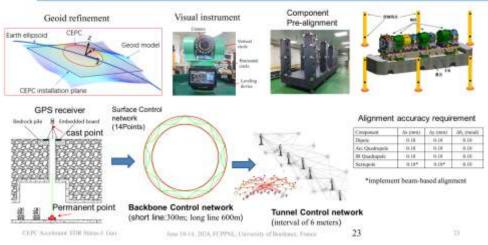
CEPC collider ring 650MHz 2*cell short test module has been completed in TDR phase

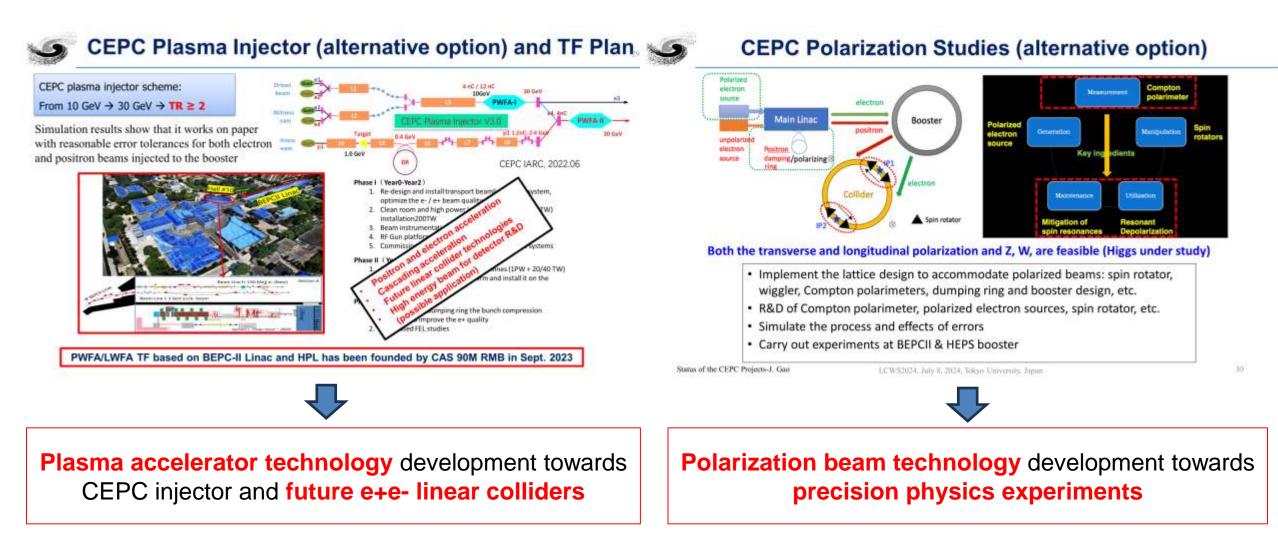

The collider Higgs mode for 30 MW SR power per beam will use 32 units of 11 m-long collider cryomodules will contain six 650 MHz 2-cell cavities, and therefore, a full size 650 MHz cryomodule will be developed in EDR


Plan: Middle of 2024 design completed, End of 2025 to be completed

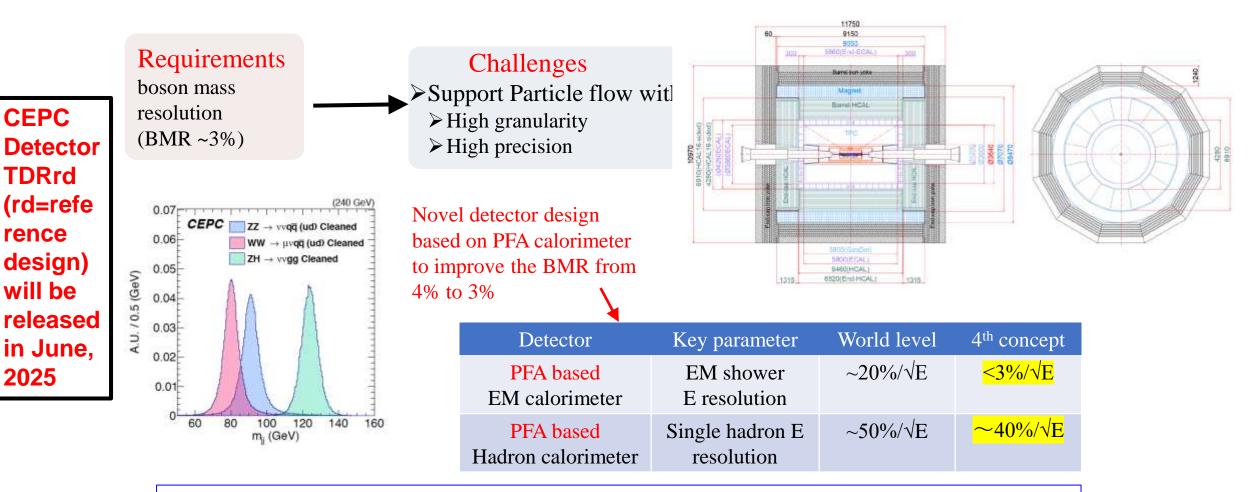
CEPC Accelerator EDR Stature J. Boo June 18-34, 2024, PCPPNL, University of Bordman, France

9

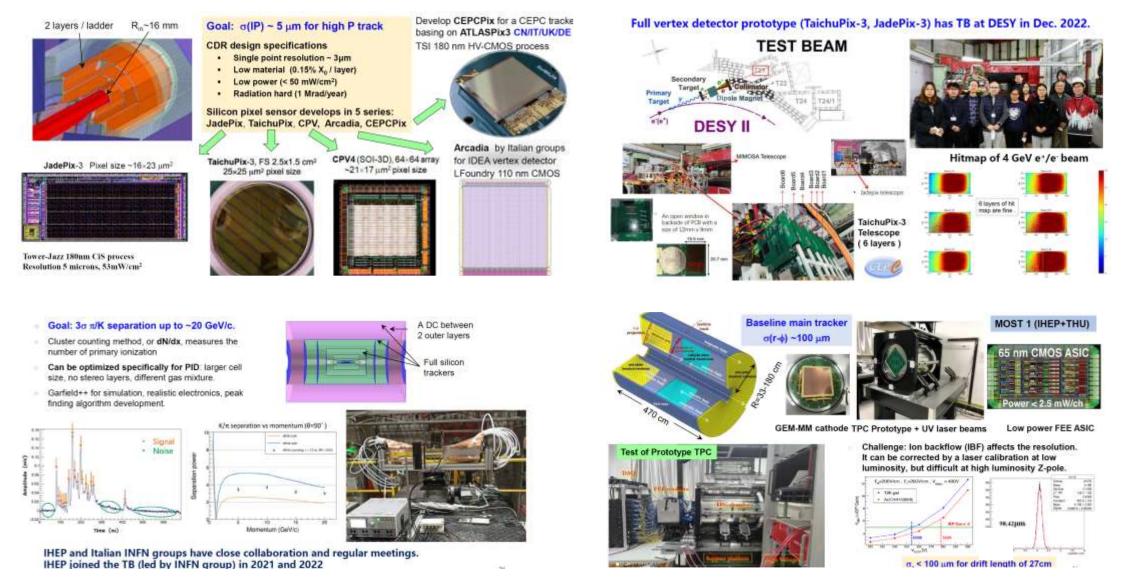

CEPC Mockup Tunnel in EDR


CEPC Alignment and Installation Plan in EDR

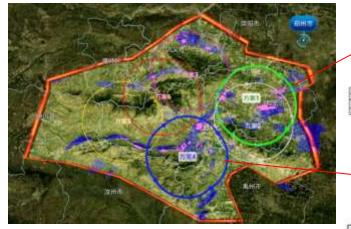
29



CEPC Accelerator Alternative Options


CEPC Detector: Idea of the "4th Concept" towards Reference Design

- Silicon combined with gaseous chamber as the tracker and PID
- > ECAL based on crystals with timing for 3D shower profile for PFA and EM energy
- Scintillation glass HCAL for better hadron sampling and energy resolution

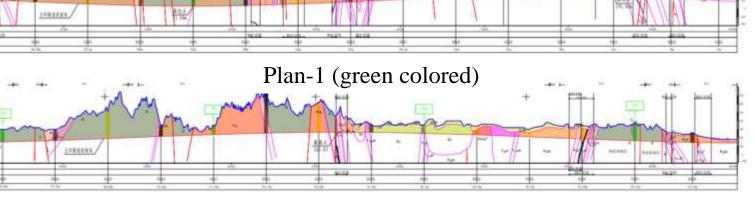


CEPC Detector R&D: Vertex Detector and Tracker (examples)

CEPC EDR Site Selection and Civil Engineering Design Progresses

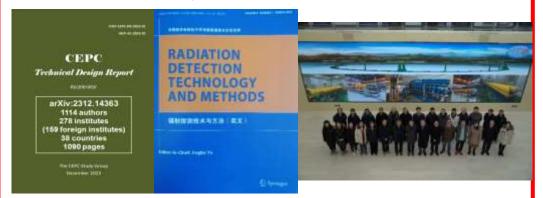
Preliminary EDR site selection report (completed)

Experimental region shaft cross section design


Arc region shaft cross section design

SRF region shaft cross section design

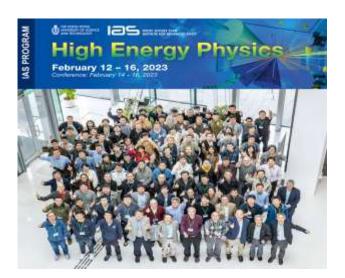
On site geological investigation


Plan-4 (bleu colored)

CEPC International Collaboration-1

CEPC attracts significant International participation and collaborations

Accelerator TDR report: 1114 authors from 278 institutes (including 159 International Institutes, 38 countries) Published in Radiation Detection Technology and Methods (RDTM) on June 3, 2024: DOI: 10.1007/s41605-024-00463-y https://doi.org/10.1007/s41605-024-00463-y


- More than 20 MoUs have been signed with international institutions and universities
- CEPC International Workshop since 2014
- EU-US versions of CEPC WS since 2018
- Annual working month at HKUST-IAS (mini workshops and HEP conference) since 2015

CEPC International Collaboration-2

HKIAS23 HEP Conference, Feb. 14-16, 2023 https://indico.cern.ch/event/1215937/

The 2024 HKUST IAS Mini workshop and conference were held from Jan. 18-19, and Jan. 22-25, 2024, respectively. https://indico.cern.ch/event/1335278/timetable/?view=standard

The 2025 HKUST IAS HEP conference: Jan. 13-17, 2025.

CEPC Workshop EU Edition (Barcelona, Spain), May 5-8, 2024

The 2023 International Workshop on Circular Electron Positron Collider, EUEdition,University of Edinburgh, July 3-6, 2023 <u>https://indico.ph.ed.ac.uk/event/259/overview</u>

The 2024 international workshop on the high energy Circular Electron Positron Collider (CEPC) will be held from Oct. 23-27, 2024, Hangzhou, China https://indico.ihep.ac.cn/event/22089/ The 2023 international workshop on the high energy Circular Electron Positron Collider (CEPC)

https://indico.ihep.ac.cn/event/19316/

Professor Peter Higgs passed away on **April 8, 2024**. We miss him.

The 2024 international workshop of CEPC, EU-Edition were held in Marseille, France, April 8-11, 2024. https://indico.in2p3.fr/event/20053/overview

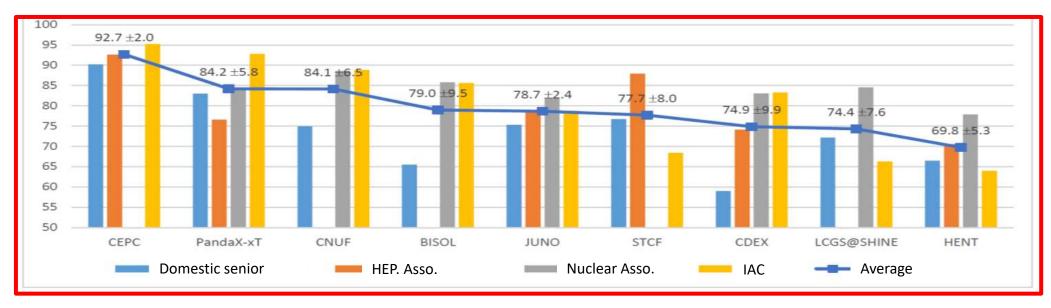
FCPPNL, Bordeaux, France, June 10-14, 2024 https://indico.in2p3.fr/event/20434/overview

Status of the CEPC Project-J. Gao

Mini-workshop on CEPC fast luminosity feedback, Sept. 14, 2024, IHEP

Participating and Potential Collaborating Companies in China and Worldwide

	System	CEPC Industrial Promotion Consortium	
1	Magnet	(CIPC, established in Nov. 2017)	Potential international collaborating suppliers and partners worldwide
2	Power supplier		
3	Vacuum		DANFYSIK SCANDITRONIX
4	Mechanics		VO HEINZINGER VOAWONSYS CAEN Technologies Inc. Zader Electrical Contracting
5	RF Power		SUR Sanei-Kikai caus
6	SRF/ RF		Canon THALES Duliding a Puture we can all trust
7	Cryogenics		bergoz
8	Instrumentation		
9	Control		SCIENTIFIC The Bab CEPC MC Meeting 7
10	Survey and alignment		
11	Radiation protection		
12	e-e+Sources		


Status of the CEPC Project-J. Gao

Mini-workshop on CEPC fast luminosity feedback, Sept. 14, 2024, IHEP

9

CEPC Project Development towards construction

- TDR has been completed (review + revision) to be formally released on Dec. 25, 2023.
- CAS is planning for the 15th 5-years plan for large science projects, and a steering committee has been established, chaired by the president of CAS.
- High energy physics and nuclear physics, is one of the 8 groups (fields).
- CEPC is ranked No. 1, with the smallest uncertainties, by every evaluation committee both domestic and international one among all the collected proposals.
- A final report has been submitted to CAS for consideration.
- The above mentioned actual process is within CAS and the following national selection process will be decisive.

CEPC Planning, Schedule and Teams

TDR (2023), EDR(2027), start of construction (~2027)

CEPC	Project Timeline	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	20
	Technical Design Report (TDR)			ſ			15 ^t	th F	Y			16	th F	TY			
Accelerator	Engineering Design Report (EDR) R&D of a series of key technologies Prepare for mass production of devices though CIPC											10		•			
Acce	Civil engineering, campus construction																
	Construction and installation of accelerator																
	New detector system design & Technical Design Report (TDR)																
Detector	Detector construction, installation & joint commissioning with accelerator																
	Experiments operation																
ional ation	Further strengthen international cooperation in the filed of Physics, detector and collider design						1										
International Cooperation	Sign formal agreements, establish at least two international experiment collaborations, finalize details of international contributions in accelerator																

CEPC team (domestic) CEPC accelerator and detector/experiments/theory group is an highly experienced team with strong international collaboration experiences. It has demonstrated its expertise and achievements is the following related projects, both domestic and international ones, such as: BEPC-BEPCII (BES-BESIII), BFELP, CSNS, ADS, HEPS, LEP, LHC, LHCb, ILC, EXFEL, HL-LHC, BELLE, BELLE-II, CLEO, Daya Bay, JUNO, etc.

CEPC international partners and collaborators

- CEPC addressed most pressing & critical science problems in particle physics
- Accelerator design and technology R&D are reaching maturity, TDR completed in 2023, ready for construction in 3-5 years after Engineering Design Report (EDR) phase
- Reference detector TDR under preparation, to be completed by 2025 for the proposal of the 15th 5-year plan
- CEPC EDR site is under study
- International collaborations are mostly welcome.

Thanks go to CEPC-SppC accelerator team's hard works, international and CIPC collaborations

Special thanks to CEPC IB, SC, IAC, IARC, IDRC and TDR review (+cost) committee's critical advices, suggestions and supports

Thanks for your attention