SRF Cavity Searches for DP

Jing Shu

Peking University

Outline

Motivation of ultra-light dark matter search using Superconducting Radio Frequency (SRF) Cavity

- SRF Cavity Project for DPDM search
- SRF Cavity Project for cosmic DP
- Other projects
- Experimental group (SHANHE collaboration)
- Summary and Outlook

Motivation of ultralight dark matter

Various DM candidate

There's a broad spectrum of possible particles with varied masses and interaction strengths, making experimental searches challenging.

The ultra-light DM

QM: All matter exhibits both particle and wave properties.

Wavelengths at macroscopic scales, manifesting as a wavelike background field

(m~10⁻²² eV)

The de Broglie wavelength: galactic scales(kpc)

Astronomical observation (time, position, velocity, polarization, etc) Distinct from traditional dark matter detection (particle scattering)

enormous potential for development in this field

similar as the GWs detection

 $m_a \sim \mathrm{GHz} \sim 10^{-6} \mathrm{eV}$

Current DPDM search

Haloscope sensitivity largely depends on Q: Superconducting cavity has Q~10^{10}

how to make use it? 5 orders more than traditional cavity.

Axion limit webpage: https://github.com/cajohare/AxionLimits/blob/master/docs/dp.md

7

Fermilab (2022)

DPDM search Haloscope detail Frequency [GHz] 10^{-1} 10^{0} 10^{1} 10^{-9} 10^{-10} SHUKE Cosmology Kinetic mixing 10-11 10 10 DOSUE igaBREAD BRASS WISPDMX CAPP-2 APP CAPI AYSTA FAST SUPAX ADMX-Sideca ORPHEU SQMS + Beijing SR **OFAR** SQuAD **HAYSTAC** (Sun) Dark E-field ADMX-1 ADMX-2^{ADMX-3} 10^{-15} $ho_{\mathrm{DM}}=0.45~\mathrm{GeV}~\mathrm{cm}^{-3}$ 10^{-16} 10^{-5} 10^{-6} 10^{-4} Dark photon mass -1 MHz -0.5 MHz 0 -9 **CMB** distortion -11⁻ FAST SHANHE Collaboration, Zhenxing Tang, Bo Wang, ω 13⁻¹³⁻ Γο Yifan Chen,... Jing Shu, e-Print: 2305.09711 [hep-SQMS ph], Phys.Rev.Lett. 133 (2024) 2, 021005 -15 First tunable results with SRF scanning deepest exclusion limit -17 -6 -5 -1 0 -3 -2 $m_{A'} - 2\pi f_0^{max} [neV]$

Spectrum of Ultra-light Dark Matter

The Virial Theorem: the velocity of dark matter near Earth is approximately 10^-3 boosted by gravity.

$$a(t) = \frac{\sqrt{2\rho_{\rm DM}}}{m_a} \cos(m_a t + \phi)$$

Frequency:
$$\omega_a \simeq \text{GHz} \; \frac{m_a}{10^{-6} \; \text{eV}}$$

Coherence:
$$\tau_a \simeq ms \; \frac{10^{-6} \; eV}{m_a}$$

Max Exp. Size:
$$\lambda_a \simeq 200 \text{ m} \frac{10^{-6} \text{ eV}}{m_a}$$

Axion DM as an example, same for other kinds (DPDM, etc)

$$\tau_a \sim 1/m_a \langle v_{\rm DM}^2 \rangle \sim Q_a/m_a \sim 10^6/m_a$$

Bandwidth of axion DM is 10⁻⁶

Detector bandwidth < 10⁻⁶ accelerate the scan rate

$$\lambda_a \sim 1/m_a \sqrt{\langle v_{\rm DM}^2 \rangle} \sim 10^3/m_a$$

Momentum width 10⁻³

SRF Cavity Project for DPDM

SRF Cavity

- Significant $Q_0 > 10^{10}$ compared to copper cavity with $Q_0 \le 10^6$.
- Superconducting Radio-Frequency (SRF) Cavities:
 extremely high $Q_0 \simeq 10^{10} \rightarrow \text{improve SNR} \propto Q_0^{1/4}$
- ▶ 1-cell elliptical niobium cavity with mechanical tuner, immersed in liquid helium at $T \sim 2 K$
- TM₀₁₀ mode: z-aligned *E*, maximizes the overlap for dark photon dark matter (DPDM)

$$\epsilon \approx 10^{-16} \left(\frac{10^{10}}{Q_0}\right)^{\frac{1}{4}} \left(\frac{4 \,\mathrm{L}}{V}\right)^{\frac{1}{2}} \left(\frac{0.5}{C}\right)^{\frac{1}{2}} \left(\frac{100 \,\mathrm{s}}{t_{\mathrm{int}}}\right)^{\frac{1}{4}} \left(\frac{1.3 \,\mathrm{GHz}}{f_0}\right)^{\frac{1}{4}} \left(\frac{T_{\mathrm{amp}}}{3 \,\mathrm{K}}\right)^{\frac{1}{2}},$$

SHANHE Collaboration, Zhenxing Tang, Bo Wang, Yifan Chen,... Jing Shu, e-Print: 2305.09711 [hep-ph], Phys.Rev.Lett. 133 (2024) 2, 021005

Experimental operation

Parameters

	Value	Fractional Uncertainty	
$V_{\rm eff} \equiv V C/3$	$693\mathrm{mL}$	< 1%	
eta	0.634 ± 0.014	1.4%	
$G_{ m net}$	$(57.30 \pm 0.14){ m dB}$	3.1%	
Q_L	$(9.092 \pm 0.081) \times 10^9$	/	
f_0^{\max}	$1.2991643795\mathrm{GHz}$	/	
Δf_0	$11.5\mathrm{Hz}$	/	
$t_{ m int}$	$100\mathrm{s}$	/	

microwave electronics for DPDM searches

Step I: Measure Cavity property

I-2 connection: VTS measurement for the cavity property.

Step 2: calibration

I-3 connection: calibration by subtracting the line loss to get the total gain G_net.

Step 3: Do experiment

2-3 connection: tune the cavity resonant frequency to do the experiment

Scan Search with Mechanical Tuning

- Mechanical turner scans resonant frequency f_0 with the step $\sim f_0/Q_{\rm DM}$
- ► Calibrate f_0 and its stability range Δf_0 in each scan
- Frequency drift $\delta f_d \leq 1.5 \text{Hz}$ and microphonics effect $\sigma_{f_0} \approx 4 \text{Hz}$

• Conservatively choose $\Delta f_0 pprox 10 \mathrm{Hz}$

New results: Microphnoics effect do not enters into the noise control (bounds can be deeper)

Data analysis and constraints

- Total 1150 scan steps with each 100 s integration time.
- Group every 50 adjacent bins and perform a constant fit to address small helium pressure fluctuation.
- Normal power excess shows Gaussian distribution:

First scan search with SRF and most stringent constraints in most exclusion space.

Few comment on Q >> Q_{DM}

simple fit function (constant): attenuation factor almost I

different from ADMX

Cosmic DP backgrounds

The Cosmic Axion Background

Jeff A. Dror,^{1, 2, 3, *} Hitoshi Murayama,^{2, 3, 4, †} and Nicholas L. Rodd^{2, 3, ‡}

¹Department of Physics and Santa Cruz Institute for Particle Physics, University of California, Santa Cruz, CA 95064, USA ²Berkeley Center for Theoretical Physics, University of California, Berkeley, CA 94720, USA ³Theory Group, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA ⁴Kavli Institute for the Physics and Mathematics of the Universe (WPI), University of Tokyo, Kashiwa 277-8583, Japan

Besides the DM searches, new particles can be served as the cosmic backgrounds.

Relativistic

Anisotropic

Modulated Signal from Galactic Dark Photons

How about galactic DP backgrounds? (Anisotropic backgrounds, from annihilation or decay?)

Perturbative cascade decay (broad 4-body spectrum)

Parametric resonance decay (relative sharp 2-body spectrum)

ADMX experiment (axion)

The very deep constrains for DP would give us much stringent constrains

Polarization

Longitudinal: from a heavy dark Higgs decay

Transverse: axion-DP coupling

T. Nitta et al. (ADMX), Phys. Rev. Lett. 131, 101002 (2023)

Modulated Signal from Galactic Dark Photons

Galactic dark photons from DM decay, e.g.: cascade decay from DM halo

- **Vectorial** observable $\propto \vec{A'}$
 - ightarrow angular-dependent signal $\propto {\cal C}(heta)$
 - \rightarrow modulation as the Earth rotates
- Production is polarization-dependent, modulations for longitude and transverse modes are opposite

Yifan Chen, Chunlong Li, Yuxiang Liu, Yuxin Liu, Jing Shu, Yanjie Zeng, e-Print: 2402.03432 [hep-ph].

SRF Constraints for Galactic Dark Photons

- Same dataset as DPDM search
- Scanned range within galactic dark photon bandwidth \rightarrow combine all scan steps to analyze

► Longitude mode has better sensitivity because of the larger spatial wavefunction $\sim \omega_{A'}/m_{A'}$

mass

Yifan Chen, Chunlong Li, Yuxiang Liu, Yuxin Liu, Jing Shu, Yanjie Zeng, e-Print: 2402.03432 [hep-ph].

International SRF Campaigns

Fermilab SQMS

•SERAPH:

Single-bin search and ongoing scan searches.

• Dark SRF:

Light-shining-wall search for dark photon.

DESY:

•MAGO 2.0

Mode transition from GW-induced cavity deformation.

SRF for axion search

$$\sum_{n} \left(\partial_t^2 + \frac{\omega_n}{Q_n} \partial_t + \omega_n^2 \right) \mathbf{E}_n = g_{a\gamma\gamma} \partial_t (\mathbf{B} \partial_t a)$$

The AC magnetic field **B** inside SRF

$$\omega_1 \simeq \omega_0 + m_a \qquad \partial_t(\mathbf{B}) \simeq i\omega_0 \mathbf{B}$$

The axion mass corresponds to the energy level difference, so one can make the axion mass much smaller than the size of the cavity! (Scan over a wide range)

$$P_{\rm sig} \simeq \frac{1}{4} \left(g_{a\gamma\gamma} \eta_{10} B_0 \right)^2 \rho_{\rm DM} V \times \pi Q_a / m_a$$

A.Berlin, R.T. D'Agnolo, et al, JHEP07(2020)no.07, 088.

超导谐振腔搜寻轴子暗物质

Normal cavity: $\omega_1 \simeq m_a$

 $\partial_t(\mathbf{B}) \simeq 0$

26

A.Berlin, R.T. D'Agnolo, et al, JHEP07(2020)no.07, 088.

Broadband search

For ultra-light axion, $\omega_1=\omega_0+m_a\simeq\omega_0$

Two degenerate and transverse modes can reach the ultra-light region!

A.Berlin, R.T. D'Agnolo, et al, [arXiv:2007.15656 [hep-ph]].

Axion search

TDR like

SHANHE collaboration

Using the existing I.3G cavity as a pathfinder

New designed cavity will be operated in the future.

Qubits Could Act as Sensitive Dark Matter Detectors

April 8, 2021 • Physics 14, s45

A detector made from superconducting qubits could allow researchers to search for dark matter particles 1000 times faster than other techniques can.

AI 3D SRF Q~2*10^7

$$\mathcal{H} = \omega_c a^{\dagger} a + \frac{1}{2} \omega_q \sigma_z + 2\chi a^{\dagger} a \frac{1}{2} \sigma_z$$

Qubit: two energy level system, induce nondemolition measurements (spectroscopy)

$$\mathcal{H}_{int} = \vec{d} \cdot \vec{E}$$
$$= g(\sigma_+ + \sigma_-)(a + a^{\dagger})$$
$$\sim 2\chi a^{\dagger} a \frac{1}{2} \sigma_z$$

DPDM signal: count the photon number by f shift

Ramsey interferometry, etc

A. V. Dixit et al., "Searching for dark matter with a superconducting qubit," Phys. Rev. Lett. 126, 141302 (2021).

 $\epsilon \geq 4.35 imes 10^{-13}$ DPDM: Using the Fock state to measure

A.Agrawal, Akash V. Dixit, Tanay Roy, Srivatsan Chakram, Kevin He, Ravi K. Naik, David I. Schuster, Aaron Chou, Phys.Rev.Lett. 132 (2024) 14, 140801 • e-Print: 2305.03700 [quant-ph]

Improved SRF Q by 1 order by using Nb instead of Al

	Fermi Lab	CC-2B	NbCy-1B ⁽¹⁾	NbCy-1B ⁽³⁾
Qubit (GHz)	4.749	4.962	5.205	5.134
Τ _{1q} (μs)	108	114	73.8	58.9
T _{2q} (μs)	61	189	40.0	55.6
t_{π} (ns)	σ=6	20	200	30
n _q (×10⁻²)	5.1	2.49	1.31	0.52
<u>T_g</u> (mK)	78	64.9	57.8	46.9
Storage (GHz)	6.011	6.532	6.439	6.439
Τ _{1s} (μs)	546	639.6	3573	2783
Τ _{2s} (μs)	774	~900	5079	~4300
Q _s (×10 ⁷)	2.06	2.63	14.5	11.3
χ _{αs} (MHz)	1.13	2.59	0.6	0.56
t _e (ns)	380	172	569	877

Better measurements by using the cat-like states

Our new results ~ 10^{-15}

A brief introduction to the team member

SRF in Peking University

First 9-cell for ILC

Peking University developed China's first superconducting radio frequency (SRF) accelerator cavity. (1994)

Q ~ I.6 -2.4 E^I0 @ I6MV/m。

equivalent level of international laboratories

Experimental facilities

Liquid helium system

2K pumping system

Vertical Dewar Cavity suspension Magnetic shielding

residual magnetism<10 mGs Static heat leak: < 1 W Cooling power: >200W@2K

SRF in IHEP

SHANHE collaboration

Superconducting cavity for High-frequency gravitational wave, Axion, and other New particles in High Energy physics

Main collaboration

Institute of High Energy Physics Chinese Academy of Sciences

Supportive collaboration

Institute of Physics, Chinese Academy of Sciences

量子科学与工程研究院 Institute for Quantum Science and Engineering

SHANHE collaboration 1. 研究方向介绍 (包括人员等)

■ 课题组成员介绍

全职人员教授1人,副研究员1人,博士后2人,在读博士生4人,本科生3人

舒菁教授

▶ 北京大学学士 芝加哥大学博士

- ▶ 2012年青年海外高层次人才 引进计划回国
- 2019年荣获全球华人物理和 天文学会颁发的亚洲成就奖
- ▶ 2020年获得国家杰出青年科 学基金资助
- > 目前北京大学博雅特聘教授
- ▶ 全面负责团队建设

汤振兴副研究员
> 兰州大学学士 中国科学技术大学博士
> 2015年大连化物所博士后
> 2016年沈阳东软医疗器械有
> 2016年沈阳东软医疗器械有
> 2017年中国科学技术大学特 聘副研究员,长期从事加速 器物理设计及工程项目建设
> 目前北京大学副研究员
> 负责团队项目工程建设

陈一帆博士后

- ▶ 中国科学技术大学学士 巴黎综合理工硕士 法国索邦大学博士
- ▶ 2019年中科院理论物理研究 ▶ 目前宁夏大学讲师,博士 所博士后
 ▶ 局前宁夏大学讲师,博士
- ▶ 目前哥本哈根大学玻尔研究 博士后,主要研究结合粒子 物理,黑洞引力以及量子精 密测量
- ▶ 负责团队项目基础理论

王博讲师

▶ 东南大学学士 东北大学硕士 中国科学院大学博士

- 目前宁夏大学讲师,博士 导师舒菁,从事暗物质、 高频引力波、天文与量子 精密测量检验
- ▷ 负责超导腔探测超轻暗物 质的理论与实验研究工作

厚德博学 止于至善

39

Summary and outlook

Summary and outlook

 High-Q SRF is extremely interesting in Haloscope wave-like DM searches (get deepest constraints).

DP backgrounds has rich information (polarization & angular distribution).

In the future (axion, GWs, quantum qubit, etc), much more can be done.

Thank you!