Phys. Rev. Lett., 125:111105 Astrophys.J. 949 (2023) 2, 67 JCAP, 02:032, 2024 JCAP 09 (2022) 077 MNRAS, 526(1):758–770, 2023 APJL,965(2):L19, 4 2024 APJL,968(1):L13, 2024 APJL,958(2):L39, 202 2023 PRD,104(10):103031 Phys. Lett. B, 139062, 2024 arXiv:2405.03787 arXiv:2406.10753

Searching for signatures of self-interacting dark matter

Daneng Yang (杨大能) **University of California**, **Riverside Purple Mountain Observertory**, **CAS**

November 14, 2024 2024年紫金山暗物质研讨会

Based on works with Hai-Bo Yu (UCR), Ethan O. Nadler (Carnegie OBSY & USC & UCSD), Yi-Ming Zhong (CityU HK), Haipeng An, Xingyu Zhang (THU), Simeon Bird, Yanou Cui, Chia-Feng Chang, Demao Kong (UCR)

Dark matter is cold and collisionless, overall However, it is not part of the **standard particle physics model ...**

OBFLISKS

MONOLITHS,

PYRAMIDS

GAMMA

RAYS

NEUTRON

STAR

SOLAR SYSTEM

MAYBE THOSE ORBIT LINES IN SPACE DIAGRAMS ARE REAL AND VERY HEAVY

8-BALLS

ELECTRONS PAINTED

WITH SPACE CAMOUFLAGE

Puzzles in small scale observations

Tulin and Yu 2017 (Review) data compiled in Oman+ 2015

● **The diversity problem**

Core vs Cusp & Too Big To Fail

● **Recent discussion**

& Dense lensing perturber & Black hole merger $\sum_{n=100}^{\infty}$

Features of Self-Interacting Dark Matter

CDM

SIDM

⁴ Yang, Nadler, Yu, Astrophys.J. ⁹⁴⁹ (2023) 2, ⁶⁷

- MW Subhalos
- LMC Subhalos ä
- Isolated ٠
	- -

٠

SIDM give rise to diverse density profiles

Spergel & Steinhardt 2000 and many other works

Probing the diversity through cosmological SIDM simulations Vfid: rotation curves at $r_{\text{fid}} = 2V_{\text{max}}/(70 \text{ km/s}) \text{ kpc}$

"+" from Santos-Santos+(2022); See also TangoSIDM, Correa+(2022)

Dark matter deficient galaxies in SIDM

LCDM predicts that halos hosting **ultra-diffuse galaxies** DF2 & DF4 should be dominated by dark matter

$$
M_{DM}/M_{star} \sim 200
$$

However...

$$
M_{DM}/M_{star} \lesssim 1
$$

Explaining these observations in LCDM requires at least **-5 sigma from median** (Haslbauer et. al.)

SIDM can alleviate this tension *Yang, Yu, An, Phys. Rev. Lett., 125:111105*

Nature vol. 555, 629-632 (29 March 2018)

Dark matter deficient galaxies in SIDM

SIDM **core formation** can boost **tidal stripping** making it easier to explain DF2, $\frac{1}{2}$
DF4 observations DF₄ observations

Dedicated high resolution simulations

- Under SIDM, $a 1.8$ sigma concentration 10^8 halo (& 3cm^2/g) can explain observations
- Implications: there should be an **observable** $\frac{0}{2}$ **population** of DM deficient galaxies

9 *Yang, Yu, An, Phys. Rev. Lett., 125:111105*

Dark matter deficient galaxies in the field?

Preliminary

- **SIDM** halos (in the field) with

increased Rmax have mostly
 $\frac{a}{c}$
 $\frac{a}{c}$
 $\frac{a}{c}$
 $\frac{a}{c}$
 10^{1} **increased Rmax have mostly undergone slingshot**/**backsplash**
- **SIDM can boost the tidal stripping of dark matter**

Explain diffuse outliers NFW profile in SIDM halos?!

With: *Xingyu Zhang*, *Hai*-*Bo Yu*, *Haipeng An* APJL, 968 (1), L13, 2024

With Demao Kong & Hai-*Bo Yu* (*UCR*) APJL,965(2):L19, 4 2024

Two approaches of probing SIDM subhalos

● Strong lensing perturber ● Galaxy-galaxy strong lensing

Dense Dark substructure/perturber

SDSSJ0946+1006 perturber Minor+(2020)

There is a slight offset in mass, as our main halo mass is on the lower end of the favored range

 $10^{13}~{\rm M}_\odot - 6 \times 10^{13}~{\rm M}_\odot$

Nadler, Yang, Yu, APJL 958(2):L39, 2023

profiles and strong lensing perturbers

Yang, Yu, Nadler arXiv 2406.10753, based on the parametric model for SIDM halos

Yang+2305.16176 model for SIDM halos Yang+2305.16176

Meneghetti et al., Science 369, 1347–1351 (2020)

Galaxy-galaxy strong lensing

Significantly more secondary caustics **Expect more dense subhalos**

Numerical issue? *Baryonic solutions*?

Yannick M. *Bahé*, *Jan* ²⁰²¹*& Andrew Robertson*, *Jan* ²⁰²¹

solutions?

• *Enhanced structure formation*

•

- *Dissipative dark matter*
- *Self*-*interacting dark matter*

15

SIDM core collapse tends to introduce more lensing structures in the inner region

The ratio of ² *image vs* ⁴ *image events probes the density slope of the substructure*

A comparison of mock images Yang & Yu PRD, 104(10):103031, 2021

SIDM CDM ¹⁷

SIDM from gravitational scattering?

Gravitational Rutherford scattering is similar as SIDM (A. Loeb 22)

$$
\frac{\sigma}{M_0} \approx 10 \text{ cm}^2/\text{g} \left(\frac{M_0}{10^4 \text{M}_{\odot}}\right) \left(\frac{10 \text{ km/s}}{v}\right)^4
$$

Self-interacting Fuzzy-DM models can lead to MACHO objects in the early universe

- **Enhanced structure formation**
- **New window for Fuzzy Dark Matter**
- **Cored and cuspy density profiles**

Bird,Chang,Cui,Yang PLB, 139062, 2024 Cui & Yang 24 to appear

Exploring SIDM particle properties

Yang 2405.03787 ... Kaplingha, Tulin & Yu, 1508.03339 PRL

SIDM particle properties can be extracted from rotation curves, in principle

Need to **significantly** reduce *uncertainties* from both observations and theories

New method to reduce theoretical uncertainty & obtain predictions efficiently Yang & Yu 2205.03392 JCAP Yang+2305.16176 JCAP Yang+2406.10753

Exploring SIDM particle properties

veff

- Reduce SIDM effects on halos onto **effective quantities**
- Systematically uncover particle features from data, based on a universal parametric model (Yang & Yu 22 JCAP)

Figure by Fischer et al. 2024. <https://darkium.org/#about-card>

A parametric model for SIDM halos with accretion histories

One analytic evolution profile can be applied for all isolated halos

> Effects of **accretion** is $\frac{1}{20}$ incorporated by **summing over** contributions from $(1/2)$ (0.5) (0.5) (1.0) (0.5) **many isolated halos**, each with a small increment in the **gravothermal phase**:

Δτ=(**Δt**)/**tc** where tc (collapse time) is computed using the *instantaneous* CDM halo

params

Yang+2305.16176 JCAP

https://github.com/DanengYa ng/parametricSIDM

Exploring SIDM particle parameter space

Traditional method

One N-body simulation for **one** SIDM model, using
a computing cluster, **numerically expensive** a computing cluster, **numerically expensive**

Parametric model

- Use existing CDM simulations (or semi-analytic model), which incorporates the most of the nonlinear effects (**Reuse expensive CDM simulations**)
- A **high accuracy** model is constructed based on **theoretical universality**
- Obtain SIDM predictions of **thousands halos in minutes**

Exploring SIDM parameter space on a laptop (**DM**-**only**)

https://github.com/DanengYang/parametricSIDM 22

N-body simulation results commonly include uncertainties that are difficult to discuss or quantify

Our **N**-**body simulation** results and **parametric model predictions** can validate each other

Yang, Nadler, Yu 2406.10753 23

While dark and cold... SIDM can modify DM distribution, resulting in observable signatures

Can explain intriguing anomalous observations & offer discovery opportunities

DM-deficient galaxies & Ultra-diffuse galaxies & Dense lensing perturber & Black hole merger

We can do efficient predictions, with uncertainties under control

Thanks for your attention

24

Gravothermal evolution

Thermodynamic quantities reconstructed from N-body $h_{g_{l0}}$ $h_{g_{l0}}$ $h_{g_{l0}}$ $h_{g_{l0}}$ simulations (JCAP 09 (2022) 077)

Conductivity cross section (r-dependent) \qquad

Heat conduction drives the evolution of an SIDM halo

- Particle scattering affects short range energy exchange
- Post scattering evolution controlled by gravity

Weight a *differential cross section* in the same way as heat conductivity

$$
\sigma_{\kappa}(r) = \frac{2 \int v^2 dv d\cos\theta \frac{d\sigma}{d\cos\theta} \sin^2\theta v^5 \exp\left[-\frac{v^2}{4\sigma_{\rm 1D}^2(r)}\right]}{\int v^2 dv d\cos\theta \sin^2\theta v^5 \exp\left[-\frac{v^2}{4\sigma_{\rm 1D}^2(r)}\right]}
$$

A "clock" in the gravothermal evolution

Heat conduction breaks time reversal invariance

$$
\frac{\partial}{\partial r}\left(r^2 \kappa m \frac{\partial \nu^2}{\partial r}\right) = r^2 \rho \nu^2 \frac{D}{Dt} \ln \frac{\nu^3}{\rho}
$$

Arrow of time dependent on SIDM (**the collision term**)

When $\mathbf{k} \propto #$ of scatterings $\propto \sigma$ (long-mean-free-path regime)

The **cross section** (**σ**) dependence can be absorbed into the **arrow of time**: **t** -> **t σ**

$$
t_{\rm c} = \frac{150}{C} \frac{1}{(\sigma_{\rm eff}/m)\rho_s r_s} \frac{1}{\sqrt{4\pi G \rho_s}}
$$

Related discussion in: Outmezguine+ 2204.06568; Yang+ 2305.16176; Zhong+2306.08028 & Yang+24 to appear

- Angular dependence is completely integrated out
- Only the *velocity dependence of SIDM* couples to the *halo velocity dispersion*
- *Details of an SIDM model hidden in a single halo*

A constant SIDM cross section does not affect halos in the same way

Phys. Rev. Lett. 123, 121102 (2019) Astrophys. J. 568, 475–487 (2002)

30

SIDM cross sections can have nontrivial velocity dependencies halo mass $[M_{\odot}]$
 $_{10^5 \quad 10^6 \quad 10^7 \quad 10^8 \quad 10^9 \quad 10^{10} \quad 10^{11} \quad 10^{12}}$ halo mass $[M_{\odot}]$

- Yukawa potential/Gravity: v^-4 at

large v

Massive mediator: flatten the inner

dependence
 $\sum_{i=1}^{n}$

dependence large v
- Massive mediator: flatten the inner

dependence

Quantum resonances

Realistic field halos

A simple Mathematica notebook: https://github.com/DanengYang/parametricSI DM/blob/main/basicHalos.nb

Mass growth through mergers

Inner NFW profile established quickly and
remains almost untouched
 $\frac{6}{5}$
 $\frac{6}{5}$
 $\frac{6}{5}$ remains almost untouched

- Solve for pso , rs0 from $|| -$ NFW profile
- **Estimate halo formation** time based on mass

The integral approach $\left[\begin{array}{c} \text{Cosmo-1357} \\ \text{Subhalo} \end{array}\right]$

Each gravothermal state (\overrightarrow{C}) can arise from a

"**fictitious**" progenitor of the same CDM halo & "*fictitious"* progenitor of the same CDM halo & configurations.

Subhalos

$$
\rho_{\text{SIDM}}(r, \text{``CDM'' halo & baryon params at } t, \tau)
$$
\n
$$
\downarrow \quad t \to t + \delta t
$$

 $\rho_{\text{SIDM}}(r, \text{``CDM''}$ halo & baryon params at $t + \delta t, \tau + \delta \tau$)

$$
V_{\text{max}}(t) = V_{\text{max,CDM}}(t) + \int_0^{\tau(t)} d\tau' \frac{dV_{\text{max,Model}}(\tau')}{d\tau'}
$$

$$
\tau(t) = \int_0^t \frac{dt}{t_{c,b}[\sigma_{\text{eff}}(t)/m, \rho_s(t), r_s(t), \rho_H(t), r_H(t)]}
$$

Consistently compute δτ incorporating the accretion in CDM & effective SIDM cross section

Velocity-dependence accommodate constraints and explain anomalies

$$
\frac{d\sigma}{d\cos\theta} = \frac{\sigma_0 w^4}{2 \left[w^2 + v^2 \sin^2(\theta/2) \right]^2}
$$

For identical particles, consider Moller scatterings;
(*JCAP 09 (2022) 077)*
 $\begin{array}{c}\n\text{for } \text{if } \int_{0}^{\infty} \text{d}\Omega \\
\text{if } \int_{0}^{\infty} \text{d}\Omega\n\end{array}$ (*JCAP* ⁰⁹ (2022) 077)

Velocity and angular dependence determined by particle physics models

