

Axion-like particle models and constraints

晁伟(北京师范大学)

Axion-like particle as the DM candidate

Merits

Solving the strong CP problem and the dark matter problem.

WEI CHAO

Problems

The UV origin of the Peccei-Quinn symmetry

The PQ quality problem

The mass generation mechanism of the ALP

Overproduction of ALP from the axion cosmic string

The ALP domain-wall problem

Signal of the ALP in various experiments...

• ALP mass generation via the seesaw mechanisms

Axion-like dark matter from the type-II seesaw mechanism, Wei Chao, M.J. Jin, H.J. Li Y.Q. Peng, Phys.Rev.D

Majorana Majoron and the baryon asymmetry of the Universe, Wei Chao, Y.Q. Peng, in submission

• ALP direct detections via the scattering off the electron

Direct detections of the axionlike particle revisited, Wei Chao, JJ Feng, M.Jin, Phys.Rev.D

• ALP direct detections in superfluid via the phonon signal

Axion and Dark Fermion Electromagnetic Form Factors in Superfluid He-4, Wei Chao, S. Sun, X.Wang, C. Xie, Phys.Rev.D

WEI CHAO

Outline

ALP & neutrino mass via type-l seesaw

Type-I seesaw + spontaneous breaking $U(1)_L$ symmetry

$$\mathscr{L}_{\text{BSM}} = \left(\partial_{\mu}\Phi\right)^{\dagger} (\partial^{\mu}\Phi) + \mu_{\Phi}^{2}\Phi^{\dagger}\Phi - \lambda_{1}(\Phi^{\dagger}\Phi)^{2} - \lambda_{2}(\Phi^{\dagger}\Phi)(H^{\dagger}H) - \left[Y_{N}\overline{\ell_{L}}\tilde{H}N_{R} + \frac{1}{2}\overline{N_{R}^{C}}\left(Y_{M}\Phi + m\right)N_{R} + \text{h.c.}\right]$$

$$(\phi^{+})$$

$$\text{LNV term!}$$

$$H = \begin{pmatrix} \phi^+ \\ \frac{v_{\phi} + \phi + i\chi}{\sqrt{2}} \end{pmatrix} \qquad \Phi = \frac{v_s + \tilde{s} + i\tilde{a}}{\sqrt{2}}$$

Yukawa Interaction

$$-Y_{\rm N}\overline{\mathcal{\ell}_L}\widetilde{HN}_R\to M_D$$

$$m\overline{N_R^C}N_R + h \cdot c \, .$$

Key term:

WEI CHAO

- \tilde{a} : ALP
 - $= Y_N v / \sqrt{2}$

Quantum Gravity effect!

ALP interactions and mass

Field-dependent phase transformation

 $\mathscr{C}_L \to e^{-\frac{ia}{2f}} \mathscr{C}_L \qquad S \to e^{+\frac{ia}{f}} S$

 $E_R \to e^{-\frac{ia}{2f}} E_R \qquad H \to H$

 $N_R \rightarrow e^{-\frac{ia}{2f}} N_R$

 $\mathscr{L} \to \mathscr{L} - \frac{a}{2f} \partial_{\mu} \left(\overline{\ell}_{L} \gamma^{\mu} \ell_{L} + \overline{E}_{R} \gamma^{\mu} E_{R} \right)$ $=\mathscr{L}-\frac{a}{2f}\partial_{\mu}J_{\mu}^{L}$ $=\mathscr{L} + \frac{a}{2f} \frac{N_f}{32\pi^2} \left(g^2 W^a_{\mu\nu} \widetilde{W}^{\mu\nu,a} - g'^2 B_{\mu\nu} \widetilde{B}^{\mu\nu} \right)$

 $\frac{1}{2}e^{-i\theta}\overline{N_R^C}mN_R^{}+h.c.$

ALP interactions and Majoron mass

 $\frac{1}{2}e^{-i\theta}\overline{N_R^C}mN_R^{} + h.c. \longrightarrow$

Mass insertion of righthanded neutrino masses:

Before symmetry breaking: M = m

 $M = f_a Y_M / \sqrt{2 + m}$ After symmetry breaking:

$$V_a \sim -\frac{1}{16\pi^2} \sum_{n=1}^4 a_n \cos n\theta.$$

a_1	a_2	a_3	(
$\left[mM^3\left(1-\log\frac{M^2}{M_{pl}^2}\right)\right]$	$\left 2m^2M^2\lograc{M^2}{M_{pl}^2} ight $	$-m^3M$	m

ALP mass and its relic density

WEI CHAO

$$\frac{d^2 V}{d\theta^2} = \frac{1}{16\pi^2 f_a^2} \left| a_1 + 4a_2 + 9a_3 + 16a_4 \right|.$$

 $\partial_{\mu}j^{\mu} = \left(\frac{\partial V}{\partial \phi}\right)\phi - \phi^{\dagger}\left(\frac{\partial V}{\partial \phi^{\dagger}}\right)$

In the traditional misalignment mechanism $\dot{\theta}_i = 0$

$$\dot{\theta} + \frac{1}{f_a^2} \frac{dV_a}{d\theta} = 0,$$

Different oscillation temperature

WEI CHAO

ALP mass and its relic density

ALP & neutrino mass via type-II seesaw

Type-II seesaw + spontaneous breaking $U(1)_L$ symmetry

 $V(S, \Phi, \Delta) = V(\Phi, \Delta) - \mu_S^2 (S^{\dagger}S) + \lambda_6 (S^{\dagger}S)^2$

$$\Phi = \begin{pmatrix} \phi^+ \\ \frac{v_{\phi} + \phi + i\chi}{\sqrt{2}} \\ \frac{v_{\Delta} + \delta + i\xi}{\sqrt{2}} \end{pmatrix} \qquad \Delta = \begin{pmatrix} \frac{\Delta^+}{\sqrt{2}} & \Delta^{++} \\ \frac{v_{\Delta} + \delta + i\xi}{\sqrt{2}} & \frac{\Delta^+}{\sqrt{2}} \end{pmatrix}$$

Yukawa Interaction $-\mathscr{L}_{\Delta} = Y_{\alpha\beta} \overline{\mathscr{C}_{L}^{\alpha C}} i \sigma^{2} \Delta \mathscr{C}_{L}^{\beta} + h.c.$

Key term:

 $\mu \Phi^T i \sigma^2 \Delta \Phi + h \, . \, c \, .$

WEI CHAO

LNV term!

 $+\lambda_7(S^{\dagger}S)(\Phi^{\dagger}\Phi) + \lambda_8(S^{\dagger}S)\operatorname{Tr}(\Delta^{\dagger}\Delta) + \mu \Phi^T i\tau_2 \Delta^{\dagger}\Phi + \lambda S \Phi^T i\tau_2 \Delta^{\dagger}\Phi + h.c.,$

$$S = \frac{v_s + \tilde{s} + i\tilde{a}}{\sqrt{2}}$$

 \tilde{a} : Majoron

ALP & neutrino mass via type-ll seesaw

$$m_W^2 = \frac{g^2}{4} \left(v_{\phi}^2 + 2v_{\Delta}^2 \right), \quad m_Z^2 = \frac{g^2}{4\cos^2\theta_W} \left(v_{\phi}^2 + 4v_{\Delta}^2 \right), \qquad \rho \equiv \frac{m_W^2}{m_Z^2\cos^2\theta_W} = \frac{1 + \frac{2v_{\Delta}^2}{v_{\phi}^2}}{1 + \frac{4v_{\Delta}^2}{v_{\phi}^2}}$$
Scalar mixings and masses
$$\begin{pmatrix} G^{\pm} \\ H^{\pm} \end{pmatrix} = \mathscr{R}(\beta) \begin{pmatrix} \phi^{\pm} \\ \Delta^{\pm} \end{pmatrix}, \quad \begin{pmatrix} G \\ A \\ a \end{pmatrix} = \mathscr{V}(\beta_1, \beta_2, \beta_3) \begin{pmatrix} \chi \\ \xi \\ \tilde{a} \end{pmatrix}, \quad \begin{pmatrix} h \\ H \\ s \end{pmatrix} = \mathscr{U}(\alpha_1, \alpha_2, \alpha_3) \begin{pmatrix} \phi \\ \delta \\ \tilde{s} \end{pmatrix},$$
Mixing angle for pseudo-scalars
$$\tan \beta = \frac{\sqrt{2}v_{\Delta}}{v_{\phi}}, \quad \tan \beta_1' = \frac{2v_{\Delta}}{v_{\phi}}, \quad \tan \beta_2' = 0, \quad \tan 2\beta_3' = \frac{v_{\Delta}^2 + \lambda v_{\Delta}^2 + \lambda v_{\delta}^2 + \sqrt{2}\mu v_{\delta} + 4v_{\Delta}^2 v_{\delta} (\sqrt{2}\mu + \sqrt{2}\mu)}{v_{\Delta}^2 + \lambda v_{\Delta}^2 + \lambda v_{\delta}^2 + \sqrt{2}\mu v_{\delta} + 4v_{\Delta}^2 v_{\delta} (\sqrt{2}\mu + \sqrt{2}\mu)}$$

$$m_W^2 = \frac{g^2}{4} \left(v_{\phi}^2 + 2v_{\Delta}^2 \right), \quad m_Z^2 = \frac{g^2}{4\cos^2\theta_W} \left(v_{\phi}^2 + 4v_{\Delta}^2 \right), \qquad \rho \equiv \frac{m_W^2}{m_Z^2\cos^2\theta_W} = \frac{1 + \frac{2v_{\Delta}^2}{v_{\phi}^2}}{1 + \frac{4v_{\Delta}^2}{v_{\phi}^2}}$$
Scalar mixings and masses
$$\begin{pmatrix} G^{\pm} \\ H^{\pm} \end{pmatrix} = \mathscr{R}(\beta) \begin{pmatrix} \phi^{\pm} \\ \Delta^{\pm} \end{pmatrix}, \quad \begin{pmatrix} G \\ A \\ a \end{pmatrix} = \mathscr{V}(\beta_1, \beta_2', \beta_3') \begin{pmatrix} \chi \\ \xi \\ \tilde{a} \end{pmatrix}, \quad \begin{pmatrix} h \\ H \\ s \end{pmatrix} = \mathscr{U}(\alpha_1, \alpha_2, \alpha_3) \begin{pmatrix} \phi \\ \delta \\ \tilde{s} \end{pmatrix},$$
Wixing angle for pseudo-scalars
$$\tan \beta = \frac{\sqrt{2}v_{\Delta}}{v_{\phi}}, \quad \tan \beta_1' = \frac{2v_{\Delta}}{v_{\phi}}, \quad \tan \beta_2' = 0, \qquad \tan 2\beta_3' = \frac{\sqrt{2}v_{\Delta}}{v_{\phi}^2 + \lambda v_{\Delta}^2 + \lambda v_{S}^2 + \sqrt{2}\mu v_{s}} + 4v_{\Delta}^2 v_{s} \left(\sqrt{2}\mu + \frac{\sqrt{2}v_{\Delta}}{v_{\Delta}^2 + \lambda v_{\Delta}^2 + \lambda v_{S}^2 + \sqrt{2}\mu v_{s}} \right)$$

$$m_W^2 = \frac{g^2}{4} \left(v_{\phi}^2 + 2v_{\Delta}^2 \right), \quad m_Z^2 = \frac{g^2}{4\cos^2\theta_W} \left(v_{\phi}^2 + 4v_{\Delta}^2 \right), \qquad \rho \equiv \frac{m_W^2}{m_Z^2\cos^2\theta_W} = \frac{1 + \frac{2v_{\Delta}^2}{v_{\phi}^2}}{1 + \frac{4v_{\Delta}^2}{v_{\phi}^2}}$$
Scalar mixings and masses
$$\begin{pmatrix} G^{\pm} \\ H^{\pm} \end{pmatrix} = \mathscr{R}(\beta) \begin{pmatrix} \phi^{\pm} \\ \Delta^{\pm} \end{pmatrix}, \quad \begin{pmatrix} G \\ A \\ a \end{pmatrix} = \mathscr{V}(\beta_1, \beta_2, \beta_3) \begin{pmatrix} \chi \\ \xi \\ \tilde{a} \end{pmatrix}, \quad \begin{pmatrix} h \\ H \\ s \end{pmatrix} = \mathscr{U}(\alpha_1, \alpha_2, \alpha_3) \begin{pmatrix} \phi \\ \delta \\ \tilde{s} \end{pmatrix},$$
Mixing angle for pseudo-scalars
$$\tan \beta = \frac{\sqrt{2}v_{\Delta}}{v_{\phi}}, \quad \tan \beta_1' = \frac{2v_{\Delta}}{v_{\phi}}, \quad \tan \beta_2' = 0, \quad \tan 2\beta_3' = \frac{\sqrt{2}v_{\Delta} + \lambda v_S^2 + \sqrt{2}\mu v_s}{v_{\phi}^2 + \lambda v_S^2 + \sqrt{2}\mu v_s} + 4v_{\Delta}^2 v_s \left(\sqrt{2\mu} + \lambda v_{\Delta}^2 + \lambda v_S^2 + \sqrt{2}\mu v_s \right) + 4v_{\Delta}^2 v_s \left(\sqrt{2\mu} + \lambda v_{\Delta}^2 + \lambda v_S^2 + \sqrt{2}\mu v_s \right) + 4v_{\Delta}^2 v_s \left(\sqrt{2\mu} + \lambda v_S^2 + \lambda v_S^2 + \sqrt{2}\mu v_s \right) + 4v_{\Delta}^2 v_s \left(\sqrt{2\mu} + \lambda v_S^2 + \lambda v_S^2 + \sqrt{2}\mu v_s \right) + 4v_{\Delta}^2 v_s \left(\sqrt{2\mu} + \lambda v_S^2 + \lambda v_S^2 + \lambda v_S^2 + \sqrt{2}\mu v_s \right) + 4v_{\Delta}^2 v_s \left(\sqrt{2\mu} + \lambda v_S^2 + \lambda v_S^2 + \lambda v_S^2 + \sqrt{2}\mu v_s \right) + 4v_{\Delta}^2 v_s \left(\sqrt{2\mu} + \lambda v_S^2 + \lambda v_$$

ALP & neutrino mass via type-ll seesaw Sequential breaking of various symmetries massless ALP! **ALP** massive! **Neutrino massive** fa $V(1)_L$ **EWSB** scale Temperature $\gamma_{\Delta}/\sqrt{2}$. of Universe $4v_{\Delta}^2)$ $\mathbf{V} - \mathbf{V} S$

$$(m_{\nu})_{\alpha\beta} = y_{\alpha\beta}v$$

$$m_a^2 = \frac{\sqrt{2\mu v_{\phi}^2 v_{\Delta}(v_{\phi}^2 + v_{\phi}^2)}}{2v_{\phi}^2 (v_{\Delta}^2 + v_s^2) + 2\nu_{\phi}^2 (v_{\Delta}^2 + v_{\phi}^2 + v_{\phi}^2) + 2\nu_{\phi}^2 (v_{\Delta}^2 + v_{\phi}^2 + v_{\phi}^2) + 2\nu_{\phi}^2 (v_{\Delta}^2 + v_{\phi}^2 + v_{\phi}^2) + 2\nu_{\phi}^2 (v_{\phi}^2 + v_{\phi}^2 + v_{\phi}^2 + v_{\phi}^2) + 2\nu_{\phi}^2 (v_{\phi}^2 + v_{\phi}^2 + v_{\phi}^2$$

For experts of axion physics

Majoron mass should arise from cosine like potential!

ALP DM—oscillation time

Scale

Energy

$$m_a^2(T) = \begin{cases} \frac{\mu v_\phi^2(T) v_\Delta(T)}{\sqrt{2} f_a^2}, & T \le T_{\rm C} \\ 0, & T > T_{\rm C} \end{cases}$$

$$T_{\rm osc} = \begin{cases} T_*, & m_a < m_{aC} \\ T_{\rm C}, & m_a \ge m_{aC} \end{cases}$$

$$m_{aC} = 1.079 \times 10^{-4} \,\mathrm{eV}$$

ALP DM—Relic Density

• ALP mass generation via the seesaw mechanisms

Axion-like dark matter from the type-II seesaw mechanism, Wei Chao, M.Jin, H.Li Y.Peng, Phys.Rev.D

Majorana Majoron and the baryon asymmetry of the Universe, Wei Chao, Y.Q. Peng, in submission.

Direct detections of the axionlike particle revisited, Wei Chao, J. Feng, M.Jin, Phys.Rev.D

• ALP direct detections in superfluid via the phonon signal

Axion and Dark Fermion Electromagnetic Form Factors in Superfluid He-4, Wei Chao, S. Sun, X.Wang, C. Xie, Phys.Rev.D

WEI CHAO

Outline

• ALP direct detections via the scattering off the electron

WEI CHAO

Detection of the ALP

PHz

Detection of the ALP—direct detection

Axio-electric absorption of ALPs

WEI CHAO

Detection of the ALP—Condense matter material

What we concern (1): Enhanced signal?

Is there an enhanced signal of ALP in direct detections when consider both g_{ayy} and g_{aee} couplings?

W. Chao, J. Feng, M.Jin, Phys.Rev.D

Constraint of DD

JUNO Constraint

 $N_{\text{event}} = N_e \cdot \Phi_a \cdot (\sigma^{\text{IP}} + \sigma^{\text{IC}} + \sigma^{\text{IT}}) \cdot \mathcal{R} \cdot \epsilon,$

• ALP mass generation via the seesaw mechanisms

Axion-like dark matter from the type-II seesaw mechanism, Wei Chao, M.Jin, H.Li Y.Peng, Phys.Rev.D

Majorana Majoron and the baryon asymmetry of the Universe, Wei Chao, Y.Q. Peng, in submission.

• ALP direct detections via the scattering off the electron

Direct detections of the axionlike particle revisited, Wei Chao, J. Feng, M.Jin, Phys.Rev.D

Axion and Dark Fermion Electromagnetic Form Factors in Superfluid He-4, Wei Chao, S. Sun, X.Wang, C. Xie, Phys.Rev.D

Outline

• ALP direct detections in superfluid via the phonon signal

What we concern (2):New DD strategy

W Chao, S. Sun, X.Wang, C. Xie, Phys.Rev.D

boosts and the time translations in the superfluid He-4

Action of phonon field

 $S_{int} \sim \int d^4x \sqrt{\frac{\mu}{\bar{n}}} c_s \left[\left(\frac{\mu^2}{2} \frac{db}{d\mu} + \mu b \right) \dot{\pi} F^{0\rho} F^0_{\ \rho} - \mu b \partial_j \pi F^{ij} F_{0i} + \frac{b}{2} \sqrt{\frac{\mu}{\bar{n}}} c_s \partial_\mu \pi \partial_\nu \pi F^{\mu\rho} F^\nu_{\ \rho} \right]$

Is there any new constraint on the ALP coupling from the superfluid?

Phonon (quasiparticle) in Superfluid Helium-4: A Goldstone-like particle from the spontaneous breaking of the U(1) symmetry as well as the breaking of the

(1) No DD constraint on this coupling ; (2) There are already Why? strong constraint on $g_{a\gamma\gamma}$.

$$\begin{split} \frac{d\Gamma}{d\omega} &= \frac{g_{a\gamma\gamma'}^2 \bar{n}\alpha_E^2}{16\pi m_a \omega^2 m_{He} E v_a} \frac{|\mathbf{E}|^2 \omega^2}{c_s^2} \Biggl\{ (\cos^2\theta_E - c_s^2) \omega^2 \left(1 - \frac{1}{c_s^2}\right) \left[E^2 (1 - v_a^2) \right. \\ &+ 2E\omega \left(\frac{v_a}{c_s} \cos \theta - 1\right) + \omega^2 \left(1 - \frac{1}{c_s^2}\right) \right] - \omega^2 \left(1 - \frac{1}{c_s^2}\right) (E\cos \theta_E - c_s^2) \left[\omega \left(E - \frac{|\mathbf{p}|}{c_s} \cos \theta\right) - \omega^2 \left(1 - \frac{1}{c_s^2}\right) \right]^2 \Biggr\}. \end{split}$$

WEI CHAO

Constraints on $g_{a\gamma\gamma'}$

(1) A new ALP mass generation mechanism is discussed.

(2) The Direct detection of ALP is revisited.

(3) New strategy for the DD of ALP is considered.

Thank you for your attention!

