

Tsung-Dao Lee Institute

Recent Dark "Matter/Photon/Higgs" search results from ATLAS

2024年紫金山暗物质研讨会

Suzhou, 14/10/2024

Khanh N. Vu

Dark Matter

- Dark Matter existence supported by plethora of astrophysical measurements.
 - NOT sufficiently explained by Standard Model, making DM nature a central question in particle physics.
 - **DM candidate**: a strong consideration in many beyond-the-SM models.

<u>1810.09420</u>

- Probes of DM underway in several areas.
- Direct searches for elastic scattering between DM and nuclei or electrons.
- Indirect searches for products of DM annihilation or decay.
- Collider searches for production of DM from collisions of SM particles
 - complementarity to other detections at GeV-TeV scale.
 - provide access to particles mediating interactions between DM and SM sector.

Dark Matter probes at ATLAS

- ATLAS sensitive to wide variety of potential DM candidates.
- Most of DM searches at the LHC focus on Weakly Interacting Massive Particles (WIMPs).
 - usually in *simplified models* where DM couples to SM via mediator.
 - more complete (hence more complicated) models e.g 2HDM(+a) also considered.
 - detected in signatures with large **Missing Transverse Momentum** recoiling against SM particles ($E_{\rm T}^{\rm miss} + X$, so called *mono-X*).

 Also search for *(Hidden) Dark Sector* such as Dark Photon, Dark Higgs, Dark QCD, and so on.

DM benchmark models at LHC

Today's talk

EUROPEAN ORGANISATION FOR NUCLEAR RESEARCH (CERN)

i.scib.2024.06.003 Sci. Bull. (in press)

Submitted to: Science Bulletin

CERN-EP-2023-088 2nd June 2023

Combination and summary of ATLAS dark matter searches interpreted in a 2HDM with a pseudo-scalar mediator using 139 fb⁻¹ of $\sqrt{s} = 13$ TeV *p p* collision data

The ATLAS Collaboration

- Thanks and credits to the Chinese ATLAS collaborators:
 - Michigan: Zirui Wang; Wisconsin: Rui Zhang
 - **USTC**: Chuanshun Wei, Lailin Xu
 - **IHEP**: Xinhui Huang, Zhijun Liang
 - TDLI/SJTU: Changqiao Li, Shu Li, Qibin Liu, Xuliang Zhu, Ngoc Khanh Vu

PART 01

Combination and summary of ATLAS Dark Matter searches interpreted in 2HDM+a

Two-Higgs-Doublet-Model + pseudo-scalar mediator (2HDM+a) LHC Dark Matter Working Group JHEP 05 (2017) 138

- Minimal, UV-complete extension of pseudo-scalar DM simplified models.
- Fully defined by 14 parameters but reduced to 5 unconstrained parameters.

 $m_A = m_H = m_{H^{\pm}}$ masses of additional heavy Higgs m_a mass of pseudo-scalar mediator m_{χ} DM mass $\sin \theta$ mixing angle between the pseudo-scalars $\tan \beta$ ratio of 2 Higgs doublet VEVs

 2HDM+a is complicated BUT more theoretically complete, predicting broader range of collider signatures wrt common simplified models.

 $E_{\rm T}^{\rm miss}$ + jet

 $t\bar{t}t\bar{t}$

 $h \rightarrow aa \rightarrow 4f \text{ or } h \rightarrow \text{ inv }_6$

Experimental signatures

- Most constraining signatures of 2HDM+a
 - $E_{\rm T}^{\rm miss} + h(\rightarrow bb)$ [JHEP 11 (2021) 209]
 - $E_{\rm T}^{\rm miss} + Z(\rightarrow \ell \ell)$ [PLB 829 (2022) 137066]
 - *tbH*[±](*tb*) [JHEP 06 (2021) 145]
- $tbH^{\pm}(tb)$ gives significant complementarity to sensitivities of $E_{\rm T}^{\rm miss} + X$

Statistical combination

• Stat. combination of 3 channels to maximize 2HDM+a constraints in parameter space.

• Combined upper limits obtained from likelihood function product of likelihoods from 3 input channels, using profilelikelihood-ratio test with <u>CLs method</u> following <u>asymptotic</u> formulae.

• Syst. uncertainties correlated where appropriate except those from modelling and those over-constrained / pulled in individual channels.

Summary of constraints on 2HDM+a

- Constraints on 2HDM+a interpreted in 6 benchmark scenarios.
 - Highlight diverse phenomenology of 2HDM+a.
 - Study the interplay and complementarities between different signatures.

Sc	enario		Fixed para	meter values		Varied parameters	
		$\sin heta$	m_A [GeV]	m_a [GeV]	aneta		shows interplay due to
$\left \left(\begin{array}{c} 1 \end{array} \right) \right $	a	0.35			1.0	(m, m)	mass hierarchies
T	b	0.70			1.0	(m_a, m_A)	
2	a	0.35		250	—	$(m + \alpha \beta)$	motivated by similar scans
	b	0.70	_	250	_	$(m_A, \operatorname{tan} \rho)$	done for general 2HDMs
2	a	0.35	600		_	$(m \tan \beta)$	1
0	b	0.70	600		_	$(m_a, \operatorname{tan} \rho)$	illustration a -A mixing
	a	_	600	200	1.0	$\sin \theta$	parameter effect
4	b	_	1000	350	1.0		
5		0.35	1000	400	1.0	m_{χ} —	connection with
6		0.35	1200	_	1.0	(m_a, m_{χ})	cosmological constraints
							and direct/indirect searches
						showed for the 1st time	
							m_{χ} set to 10 GeV in a
							scenarios, except 5 ar

• $h \rightarrow$ invisible constrains very low m_a .

• Constraints from $E_{\rm T}^{\rm miss} + h$ signatures: similar m_A - m_a dependence, with $h \rightarrow bb$ most sensitive.

notably different.

 Complementary constraints from searches not targeting DM.

Sensitivity of 2HDM+a driven by the combination.

Most comprehensive set of constraints on 2HDM+a to date

Summary of constraints on 2HDM+a Scenario 6: $\sin \theta = 0.35$, $\tan \beta = 1$, $m_A = 1.2$ TeV, $m_a - m_\gamma$ scan

Observed Expected

- $= E_{\tau}^{\text{miss}} + h(b\overline{b}), 139 \text{ fb}^{-1}$ JHEP 11 (2021) 209 - *h* \rightarrow invisible, 139 fb⁻¹ PLB 842 (2023) 137963 - h \rightarrow aa \rightarrow $\mu\mu\tau\tau$, 20.3 fb⁻¹ PRD 92 (2015) 052002 *h→aa→μμμμ*, 36.1 fb⁻¹ JHEP 06 (2018) 166 - h \rightarrow aa \rightarrow $\mu\mu\mu\mu\mu$, 139 fb⁻¹ JHEP 03 (2022) 041
- $-h \rightarrow aa \rightarrow bbbb$, 36.1 fb⁻¹ JHEP 10 (2018) 031
- *h→aa→bbμμ*, 139 fb⁻¹_ PRD 105 (2022) 012006
- Observed Relic $\Omega_c h^2 = 0.12$

h

results used to constrain part of previously unprobed region where $a \nleftrightarrow \chi \chi$ for the 1st time

Summary of constraints on 2HDM+a Scenario 5: $\sin \theta = 0.35$, $\tan \beta = 1$, $m_a = 400$ GeV, m_{γ} scan

https://mp.weixin.qq.com/s/l1Mgrwyh15KMKnf9r9yjsQ

PART 02

NEW Combination of ATLAS searches for Higgs boson decays into a photon and a massless dark photon

Massless dark photon

- Undetected Higgs decay $\mathscr{B}_{u} < \mathscr{O}(10\%)$ from <u>ATLAS</u> and <u>CMS</u> motivates searches for elusive BSM dark sector particles coupled to Higgs. One attractive candidate is undetectable, massless dark photon (γ_d).
 - Force carrier of extra $U(1)_d$ gauge symmetry of dark sector.
 - Introducing dark matter self-interactions for solving small-scale structure formation problem and PAMELA-Fermi-AMS2 anomaly. Enhancing light DM annihilation rate, making asymmetric DM scenarios phenomenologically viable.
 - $oldsymbol{O}$ $oldsymbol{O}$
- Potential approach is search for $H \rightarrow \gamma \gamma_d$ in resonant $\gamma + E_T^{\text{miss}}$ signatures via three Higgs production modes

ggF process

VBF process

18

ZH process

Recent $H \rightarrow \gamma \gamma_d$ searches

• Both ATLAS and CMS published various results for $H \rightarrow \gamma \gamma_d$ searches in distinct final states using LHC full Run 2 data:

	$\gamma + E_{T}^{miss}$ (ggF channel)	
ATLAS	reinterpretation of mono- γ	
CMS		

 $H_{125} \rightarrow \gamma \gamma_{\rm d}$

	ZH channel	VBF channel	Combined
ATLAS	2.3 (2.8) %	1.8 (1.7) %	This analysis
CMS	4.6 (3.6) %	3.5 (2.8) %	2.9 (2.1) %

95% CL limit on BR

* ATLAS provided competitive and complementary results, strong motivation for stat. combination to bring the best LHC constraint on $H_{125} \rightarrow \gamma \gamma_d$ and broadest search in terms of BSM H mass (400 - 3000 GeV).

"Process" refers to production mode "Channel" refers to selection topology $\stackrel{\wedge}{\asymp}$

 $\gamma + E_{T}^{miss} + VBF jets$ $\gamma + E_{\mathrm{T}}^{\mathrm{miss}} + Z(\rightarrow \ell \ell)$ (VBF channel) (ZH channel) EPJC 82 (2022) 105 <u>JHEP 07 (2023) 133</u> JHEP 10 (2019) 139 JHEP 03 (2021) 011

 $H_{\rm BSM} \rightarrow \gamma \gamma_{\rm d}$

	VBF channel	ggF channel	Combined
ATLAS	Up to 2 TeV	Up to 3 TeV	This analys
CMS	Up to 1 TeV		

Mass range probed for *H*

Scenarios of combination

VBF channel

Input channel	Signals	m_H
ZH	$SM \ (ZH)H \to \gamma \gamma_d$	125 Ge
VBF	$SM \ (ggF + VBF)H \to \gamma \gamma_d$	125 Ge
	$BSM(VBF)H\to\gamma\gamma_d$	[60, 2000]
ggF	BSM (ggF + VBF)H $\rightarrow \gamma \gamma_d$	[400, 3000]

For this combination, adjustments wrt original VBF channel

GeV

- Extend *H* mass to 3 TeV.

ggF channel

 $\sigma(ggF + VBF) \times BR(H \rightarrow \gamma \gamma_d)$

• ggF process contribution included for BSM Higgs decay search.

Massless γ_d

Stat. combination -- Results

♦ VBF-ZH combination set strongest limit on $\mathscr{B}(H_{125} \rightarrow \gamma \gamma_d)$ at LHC to date.

• improved by 29% wrt VBF channel.

♦ VBF-ggF combination set most comprehensive constraints on $\sigma_{ggF+VBF} × 𝔅(H_{BSM} → γγ_d)$ for *H* mass up to 3 TeV.

• improved by 33% wrt ggF channel at $m_H = 1.5$ TeV.

Physics interpretation

- ♦ VBF-ZH combined limit on $\mathscr{B}(H_{125} \rightarrow \gamma \gamma_d)$ interpreted in a *Minimal Simplified Model* [1405.5196]
 - Generic Lagrangian: $\mathcal{L} \sim \mu \cdot H^{\dagger}S_{L}S_{R} + h.c. \xrightarrow{\text{EWSB}} \mathcal{L}_{S}^{0} = \partial_{\mu}\hat{S}^{\dagger}\partial^{\mu}\hat{S} \hat{S}^{\dagger}M_{S}^{2}\hat{S}$
 - μ mass parameter; S_L $SU(2)_L$ doublet; S_R $SU(2)_L$ singlet

* BR of $H \rightarrow \gamma \gamma_d$ / $\gamma_d \gamma_d$ / $\gamma \gamma$ can be expressed as functions of $U(1)_d$ fine-structure-constant α_d and mixing parameter ξ

$$BR_{\gamma\gamma_{D}} = BR_{\gamma\gamma}^{SM} \frac{r_{\gamma\gamma_{D}}}{1 + r_{\gamma_{D}\gamma_{D}} BR_{\gamma\gamma}^{SM}}$$
$$BR_{\gamma_{D}\gamma_{D}} = BR_{\gamma\gamma}^{SM} \frac{r_{\gamma_{D}\gamma_{D}}}{1 + r_{\gamma_{D}\gamma_{D}} BR_{\gamma\gamma}^{SM}}$$
$$BR_{\gamma\gamma} = BR_{\gamma\gamma}^{SM} \frac{(1 + \chi\sqrt{r_{\gamma\gamma}})^{2}}{1 + r_{\gamma_{D}\gamma_{D}} BR_{\gamma\gamma}^{SM}}$$

$$r_{\gamma\gamma_{\rm D}} = 2X^2 \left(\frac{\alpha_D}{\alpha}\right)$$
$$r_{\gamma_{\rm D}\gamma_{\rm D}} = X^2 \left(\frac{\alpha_D}{\alpha}\right)^2$$
$$r_{\gamma\gamma} = X^2$$
$$X \equiv \frac{\xi^2}{3F(1-\xi^2)}$$

$$\xi = \frac{\Delta}{\bar{m}^2}$$

Physics interpretation

 $\chi = +1$: scenario with constructive interference from messenger sector in $H_{125} \rightarrow \gamma \gamma$

$$H \rightarrow \gamma \gamma_{d}$$
 Observed 95% CL

VBF-ZH combination

 $H \rightarrow inv Observed 95\% CL$

PLB 842 (2023) 137963

 $H \rightarrow \gamma \gamma$ ATLAS measurement $BR(H_{125} \rightarrow \gamma \gamma) = 0.247_{-0.020}^{+0.022}\%$ Nature 607 (2022) 52

 $H \rightarrow \gamma \gamma$ SM prediction $\mathsf{BR}(H_{125} \rightarrow \gamma \gamma) = 0.227\%$ arXiv:1610.07922 $B(H \rightarrow \gamma \gamma_{\rm d}) = 0.2 \%$

 $B(H \rightarrow \gamma \gamma_{\rm d}) = 0.1 \%$

BR limits and measurements from this combination, $H \rightarrow inv$ or $H \rightarrow \gamma\gamma$ can be translated into constraints in (α_d , ξ).

- * $\xi \simeq 0.7$ at $\alpha_{\rm d} = 1$ excluded by $\mathscr{B}(H_{125} \rightarrow \text{inv})$ limit interpreted in terms of $H_{125} \rightarrow \gamma_d \gamma_d$ signal.
- $H_{125} \rightarrow \gamma \gamma_d$ combination provides additional sensitivity in low- α_d region, which is disfavoured by ATLAS $\mathscr{B}(H_{125} \rightarrow \gamma \gamma)$ measurement.
- Still need $\sim \mathcal{O}(1)$ better in sensitivity for $H_{125} \rightarrow \gamma \gamma_{\rm d}$ search.

PART 03

NEW ATLAS Dark Higgs search in bb final state

Dark Higgs + Z' search Mono-S(\rightarrow bb)

$$\mathcal{L}_{\chi} = -\frac{1}{2} g_{\chi} Z^{\prime \mu} \bar{\chi} \gamma^5 \gamma_{\mu} \chi - g_{\chi} \frac{m_{\chi}}{m_{Z^{\prime}}} s \bar{\chi} \chi + 2 g_{\chi} Z^{\prime \mu} Z^{\prime}_{\mu} \left(g_{\chi} s^2 + m_{Z^{\prime}} s \right)$$

First search aiming for a low-mass dark Higgs boson + new benchmark scenarios $30 < m_{\rm s} < 150 \, {\rm GeV}$

- Dark Higgs boson (scalar s) introduced together with Z' and Majorana DM [JHEP 04 (2017) 143]
- New DM annihilation channel to SM opened up $(\chi\chi \rightarrow s \rightarrow \dots).$
 - Relax the constraint from cosmology \rightarrow Prevent DM relic density (Ωh^2) over-production issue of common WIMP model.
- Scalar particle mixing with SM Higgs.
 - Detectable decay products depending on mass: $s \rightarrow VV$, $s \rightarrow bb.$
- ATLAS reported results for high mass dark Higgs searches through $s \rightarrow VV$ channel.

Benchmark scenarios

- 6 parameters controlling the interaction with SM and DM.
- Fixed- g_{γ} search as benchmark (scenario 1)
 - Scan m_s v.s $m_{Z'}$ with $m_{\chi} = 200$ GeV, $g_{\chi} = 1.0$
- Cosmological constraint: freeze-out relic density Ωh^2
 - Observation from PLANCK2018: $\Omega h^2 = 0.1200 \pm 0.0012$
- Introduce 2 new benchmark scenarios [First time!] with g_{χ} varied to satisfy the observed relic density (scenario 2, 3)
 - Scan m_s v.s $m_{Z'}$ with $m_{\chi} = 900$ GeV.
 - Scan m_{χ} v.s $m_{Z'}$ with $m_s = 70$ GeV.

	Parameter	Explain
	m _s	mass of dark higgs
	mχ	mass of DM to search
	$m_{Z'}$	mass of heavy mediator
	${oldsymbol{g}}_{\chi}$	coupling in dark sector between s, X, Z'
0	g _q	coupling with SM: q<->Z fixed 0.25 as benchmark
	θ	mixing angle of SM Higgs<->dark Higgs fixed according to [1]

[1] <u>JHEP 04 (2017) 143</u>

Analysis strategy

- Search for low mass dark Higgs with $bb + E_T^{\text{miss}}$ signature
- Data triggered with $E_{\rm T}^{\rm miss}$ and search starts from 150 GeV
- Regions divided by $E_{\rm T}^{\rm miss}$: from resolved to merged topology to cover all the interesting phase space.

Resolved regions: reconstructed by 2 small-R jets and tagged using DLIr 77% Merged region: I reclustering large-R jet and mixed tagging methods \rightarrow benefit from advanced techniques

Reclustering(RC) jet extend searched scalar mass down to 20GeV Large-R jet kin. and sub-jet info. combined for boosted Xbb tagging: DXbb

Results Scenario 1

- mZ' values are excluded up to 3.4 TeV at $m_S = 70$ GeV.

Results Scenarios 2 & 3

- DM coupling varies to satisfy the observed relic density throughout
 - $m_{Z'}$ excluded up to 4.1 TeV with fixed m_{χ} at 900 GeV (scenario 2)
 - $m_{Z'}$ excluded up to the perturbative limit and m_{χ} excl. to 1TeV at $m_{S} = 70$ GeV (scenario 3) ullet

First LHC dark Higgs search in cosmology coherent context

Conclusions

- our understandings about the Universe.
- - Constraints set on extended Higgs models and Dark Sector (Dark Photon, Dark Higgs).
 - Many combination efforts to improve sensitivity reach.
 - Results are complementary to Direct and Indirect experiments.
- LHC Run-2 results are still coming.
- Much more to come with Run-3 dataset including upgraded detectors and innovative methods.

• Unfortunately, Dark Matter particles have NOT YET been discovered at the colliders. DM nature is still one of central questions to

• Wide range of DM benchmark models and experimental signatures has been probed at both ATLAS and CMS using full Run-2 data:

STAY TUNED!

Thank you for attention

Backup

 $E_{T}^{\text{miss}} + Z(ll)$

- Event topology:
 - Z boson recoiling against large $E_{\rm T}^{\rm miss}$
 - Presence of a pair of high- $p_{\rm T}$, same flavour, oppositely charged leptons.
- SM backgrounds estimated using dedicated Control Regions.
- Fit to data is performed on $m_{\rm T}^{\rm lep}$ and $E_{\rm T}^{\rm miss}$

Phys. Lett. B 829 (2022) 137066

gg-initiated

 $E_{\mathrm{T}}^{\mathrm{miss}}$ +h(bb)

- Event topology:
 - Higgs boson recoiling against large $E_{\rm T}^{\rm miss}$
 - at least 2 b-jets.
 - Higgs decay reconstructed as single large Radius jet for events with high $E_{\rm T}^{\rm miss}$.
 - SM backgrounds estimated from Control Regions.
 - Fit to data on m_{bb} and event counting in CRs.

<u>JHEP 11 (2021) 209</u>

$tbH^{\pm}(tb)$

- re-interpretation of general 2HDM search by rescaling exclusion upper limits.
- Event topology:
 - **1lepton** $+ \ge 5j + \ge 3b$ to target semi-leptonic decay of one of top quarks
- A Neural Network used to enhance discrimination between signals and bkgs.
- Dominant background estimated using data-driven technique.
- Fit to data performed on NN distributions.

Input overview VBF channel EPJC 82 (2022) 105

- **Topology:**
 - 1 photon, 2 or 3 VBF jets, $E_{\rm T}^{miss}$
 - Lepton (e, μ) veto
- Background estimation
 - $W(\rightarrow \ell \nu)\gamma + \text{jets}, Z(\rightarrow \nu \nu)\gamma + \text{jets},$ and *e*-fake γ from control regions (CR).
 - jet-fake γ from data-driven.
- Fit to data on m_{j_1,j_2} , $m_T(\gamma, E_T^{\text{miss}})$ bins in SR and 4 CRs.

Trigger Photons $E_{\rm T}^{\gamma}$ [GeV] $E_{\rm T}^{\rm miss}$ [GeV] Jets

Leptons

VBF	ZH	ggF
$E_{\mathrm{T}}^{\mathrm{miss}}$	Lepton(s)	Photon
$= 1, C_{\gamma} > 0.4$	= 1	≥ 1
$\in (15, \max(110, 0.733 \times m_{\rm T}))$	> 25	> 150
> 150	> 60	> 200
2 or 3, $m_{j_1 j_2} > 250 \text{ GeV}$, $ \Delta \eta_{j_1 j_2} > 3$	≤ 2	≤ 1
$\eta_{j_1} \cdot \eta_{j_2} < 0, \Delta \phi_{j_1 j_2} < 2, C_{j_3} < 0.7$		
$= 0 (e, \mu)$	= 2, SFOC	$=0~(e,\mu,\tau)$
	$m_{\ell\ell} \in (76, 116) \text{ GeV}$	

Input overview VBF channel EPJC 82 (2022) 105

- Topology:
 - 1 photon, 2 or 3 VBF jets, $E_{\rm T}^{miss}$
 - Lepton (e, μ) veto
- Background estimation
 - $W(\rightarrow \ell \nu)\gamma + \text{jets}, Z(\rightarrow \nu \nu)\gamma + \text{jets},$ and *e*-fake γ from control regions (CR).
 - jet-fake γ from data-driven.
- ✤ Fit to data on $m_{j_1j_2}$, $m_T(\gamma, E_T^{miss})$ bins in SR and 4 CRs.

Channels

Trigger Photons $E_{\rm T}^{\gamma}$ [GeV] $E_{\rm T}^{\rm miss}$ [GeV] Jets

Leptons

10⁻³

VBF	ZH	ggF
$\begin{split} E_{\rm T}^{\rm miss} \\ &= 1, C_{\gamma} > 0.4 \\ &\in (15, \max(110, 0.733 \times m_{\rm T})) \\ &> 150 \\ &2 {\rm or} 3, m_{j_1 j_2} > 250 {\rm GeV}, \Delta \eta_j \\ &\eta_{j_1} \cdot \eta_{j_2} < 0, \Delta \phi_{j_1 j_2} < 2, C_{j_3} \cdot \eta_{j_3} \\ \end{split}$	Lepton(s) = 1 > 25 > 60 $j_1 j_2 > 3 \le 2$ < 0.7	Photon ≥ 1 > 150 > 200 ≤ 1
$= 0 \ (e, \ \mu)$	= 2, SFOC $m_{\ell\ell} \in (76, 116) \text{ GeV}$	$=0 (e, \mu, \tau)$
$m_{H} = 60 - 2000 \text{ GeV}$ $m_{\gamma d} = 0 \text{ GeV}$	$ATLAS$ $\sqrt{s} = 13 \text{ TeV}, 139 \text{ fb}^{-1}$ $Limits at 95\% \text{ CL}$ $VBF \text{ Higgs couplings}$ $V_{d}^{}=0.05$	
10-	$10^{\circ} m_{H}$	[GeV]

For this combination,

• ggF process contribution included for BSM Higgs decay search.

• Extend *H* mass to 3 TeV.

Input overview ZH channel JHEP 07 (2023) 133

Channels

Trigger Photons $E_{\rm T}^{\gamma}$ [GeV] $E_{\rm T}^{\rm miss}$ [GeV] Jets

Leptons

- Topology
 - 1 photon, no more than 2 jets, $E_{\rm T}^{miss}$ $oldsymbol{O}$
 - 2 same-flavour, oppositely charged (SFOC) leptons \bigcirc within Z mass window
- BDT applied to enhance signal-bkg separation.
- Bkg estimation
 - Irreducible $VV\gamma$ from a dedicated CR.
 - Major $Z\gamma$ + jets, Z + jets and e-fake γ from data-driven
- Fit to data performed including SR (binned by BDT) and $VV\gamma$ CR.

ZH	ggF
Lepton(s)	Photon
= 1	≥ 1
> 25	> 150
> 60	> 200
≤ 2	≤ 1
= 2, SFOC	$= 0 \; (e, \mu, \tau)$
$m_{\ell\ell} \in (76, 116) \text{ GeV}$	
	ZH Lepton(s) $= 1$ > 25 > 60 ≤ 2 $= 2, SFOC$ $m_{\ell\ell} \in (76, 116) \text{ GeV}$

No significant deviation from SM prediction.

Input overview ZH channel JHEP 07 (2023) 133

Channels

Trigger Photons $E_{\rm T}^{\gamma}$ [GeV] $E_{\rm T}^{\rm miss}$ [GeV] Jets

Leptons

- Topology
 - 1 photon, no more than 2 jets, $E_{\rm T}^{miss}$
 - 2 same-flavour, oppositely charged (SFOC) leptons within Z mass window
- BDT applied to enhance signal-bkg separation.
- Bkg estimation
 - Irreducible $VV\gamma$ from a dedicated CR.
 - Major $Z\gamma$ + jets, Z + jets and e-fake γ from data-driven
- Fit to data performed including SR (binned by BDT) and $VV\gamma$ CR.

gF
hoton
1
150
200
1
$0(e, \mu, \tau)$
0 (<i>e</i> , μ, -

Channels Input overview ggF channel Jets 0000

H

Trigger Photons $E_{\rm T}^{\gamma}$ [GeV] $E_{\rm T}^{\rm miss}$ [GeV]

Leptons

Events

a / Bkg

Background estimation

g

g

- True photon bkgs: $Z(\rightarrow \nu\nu)\gamma$, $W(\rightarrow \ell\nu)\gamma$ and $Z(\rightarrow \ell \ell)\gamma$ from dedicated CRs.
- *e*-fake γ and jet-fake γ from data-driven.
- Fit to data performed including all SR (binned by $E_{\rm T}^{miss}$) and CRs.
 - Including both VBF and ggF processes.

Input overview ggF channel

Channels

Trigger

Photons

Leptons

BR [pb]

95% CL limit on

10⁻¹

Jets

 $E_{\rm T}^{\gamma}$ [GeV]

 $E_{\rm T}^{\rm miss}$ [GeV]

Topology

• At least 1 photon, max 1 jet , large $E_{\rm T}^{miss}$

- Lepton (e, μ, τ_{had}) veto
- Background estimation
 - True photon bkgs: $Z(\rightarrow \nu\nu)\gamma$, $W(\rightarrow \ell\nu)\gamma$ and $Z(\rightarrow \ell \ell)\gamma$ from dedicated CRs.
 - *e*-fake γ and jet-fake γ from data-driven.
- Fit to data performed including all SR (binned by E_{T}^{miss}) and CRs.
 - Including both VBF and ggF processes.

VBF	ZH	ggF
$E_{\rm T}^{\rm miss}$	Lepton(s)	Photon
$= 1, C_{\gamma} > 0.4$	= 1	≥ 1
$\in (15, \max(110, 0.733 \times m_{\rm T}))$	> 25	> 150
> 150	> 60	> 200
2 or 3, $m_{j_1 j_2} > 250 \text{ GeV}$, $ \Delta \eta_{j_1 j_2} > 3$	≤ 2	≤ 1
$\eta_{j_1} \cdot \eta_{j_2} < 0, \Delta \phi_{j_1 j_2} < 2, C_{j_3} < 0.7$		
$= 0 (e, \mu)$	= 2, SFOC	$=0(e,\mu,\tau)$
	$m_{\ell\ell} \in (76, 116) \text{ GeV}$	

Stat. combination Systematic uncertainty correlation

Uncertainties from luminosity, pile-up modelling are correlated.

Experimental uncertainties: correlated where appropriate, exceptions are:

- \bigcirc
- Uncertainties **heavily constrained or pulled** in original input analyses. $igodoldsymbol{0}$

Background modelling uncertainties

Incorrelated since bkg composition and phase space are different.

Signal modelling uncertainties

• Stemming from choice of parton distribution functions and QCD calculations; minor impact on final results; uncorrelated.

Uncertainties related to same objects but implemented with different schemes among input channels (e.g Jet-Energy-Resolution).

Stat. combination -- SM Higgs

Uncertainty source

Theory uncertaintie Signal modelling Background mode Experimental uncer Luminosity, pile-1 Jets, $E_{\rm T}^{\rm miss}$ Electrons, muons Fake background MC statistical unc Systematic uncertaint Statistical uncertainty

Total uncertainty

- Fake bkg and MC stat.

	$\Delta \mathcal{B}_{\text{group}} / \Delta \mathcal{B}_{\text{total}} [\%]$
es	49
	2.2
elling	47
rtainties	63
up	< 0.1
	40
	11
	35
certainty	36
ties	75
7	66
	100

Comparable impacts from Syst. and Stat. uncertainties.

✤ Leading syst. uncertainties from bkg modelling, Jets, E_T^{miss} ,

Stat. combination -- BSM Higgs

Uncertainty source m_H [GeV] Theory uncertainties Signal modelling Background modelling Experimental uncertainties Luminosity, pile-up Jets, $E_{\rm T}^{\rm miss}$ Electrons, muons Fake background MC statistical uncertainty Statistical uncertainty Systematic uncertainties Total uncertainty

- Stat. uncertainty dominant at higher *H* masses.
- modelling. Others share ~20% impact each.

$\Delta \mathcal{B}_{\text{group}} / \Delta \mathcal{B}_{\text{total}}$ [%]					
400	800	1000	2000	3000	
30	27	28	40	35	
2.2	4.6	5.2	6.9	2.0	
30	27	27	38	34	
64	51	45	37	41	
4.6	2.6	2.9	2.8	2.3	
22	12	11	13	14	
20	23	18	13	14	
52	41	35	25	29	
20	17	19	19	23	
75	84	87	85	86	
67	55	49	53	52	
100	100	100	100	100	

Leading syst. uncertainties from fake-bkg estimate and bkg