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City of Bonn

▪ Founded by the Romans 11 B.C. 
next to the Rhine River 

▪ Middle ages: important religious 
centre 

▪ Conquered by Napoleon in 1794 
▪ Afterwards part of Prussia 

▪ Most famous citizen 
▪ Ludwig van Beethoven (1770*) 

▪ Capital of Germany from 1949 to 
1991
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University of Bonn

▪ 1818: Foundation of the University  
▪ by King Friedrich Wilhelm III. 
▪ as partner university to Berlin 

▪ Some Figures 
▪ 33.000 students 
▪ 6.000 PhD students 
▪ >600 professors in nearly all 

subjects 

▪ Most successful excellence 
university within Germany 
▪ 5 Nobel-Prizes 
▪ 3 Field-medal winners 

▪ … and our own accelerator 
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My Research Group 
in Bonn
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What could we talk 
about today?

W-Boson Properties

(g-2) of the tau

Light-by-Light Scattering

Strong Coupling Constant

Axions at the LHC

Searching for New  
Physics with Loops Searches for Axions

Light Through Wall

Helioscope

Cavity-based Searches



Prof. Dr. Matthias Schott

Matthias Schott 

Search for Axion-Like 
Particles 
Or why we did not find axion-like particles at the 
LHC, but might discover gravitational waves instead
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Why Axions?

▪ Neutron Electric Dipole Moment 
▪ violates P and T symmetry 
▪ If CPT conserved, it violates CP 

▪ Axions from Strong CP problem 
▪ Expected nEDM:~10-18 e cm.  
▪ Exp. bound is a trillion times smaller 

▪ Peccei-Quinn solution 
▪ global anomalous U(1)PQ symmetry 
▪ spontaneously broken 
▪ Axion is pseudo-Nambu-Goldstone 

boson 
▪ Predicted relation between mass 

and coupling
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Why Axion-Like 
Particles?

▪ „No“ new physics model that does 
not have a gold-stone boson 
▪ e.g. pion in QCD 
▪ More general class of axion-like 

particles (ALPs) 
▪ coupling&mass are 

independent 

▪ Many decay modes possible 
▪ This talk only covers photon 

decay modes 
▪ QCD Axion has two-photon 

vertex (Due to mixing with π0) 

▪ For large enough PQ symmetry 
breaking scale, the axion may be 
the main constituent of DM
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Overview of 
Searches for ALPS

▪ Light Through Wall (LWS) Type 
Experiments 

▪ Model-independence: yes 
▪ Couplings: yes 
▪ Mass: no / maybe 
▪ QCD-Axion: no

▪ Helioscopes: Look at the sun  

▪ Model-independence: a bit 
▪ Couplings: no 
▪ Mass: no / maybe 
▪ QCD-Axion: yes 
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Overview of 
Searches for ALPS

▪ Dark Matter Searches 

▪ Model-independence: no 
▪ Couplings: no 
▪ Mass: yes 
▪ QCD-Axion: yes

▪ Collider Based Searches 

▪ Model-independence: depends 
▪ Couplings: depends 
▪ Mass: yes 
▪ QCD-Axion: no
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Be Careful when looking at 
Exclusion Plots!

▪ Note: Not all future experiments are shown! 

▪ Only few experiments can probe only some very small regions of the QCD-Axion 
▪ … and those are strongly model dependent. 
▪ … people only zoom into the regions where they are sensitive! 
▪ … it is a logarithmic plot!



Axions at Colliders
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Axions at the LHC

▪ Many searches for light scalars ongoing, 
but most of them not really well motivated 

▪ Higgs Portal could connect high energy 
physics with low energy phenomena 
▪ M. Bauer, M. Neubert, A. Thamm, Collider 

Probes of Axion-Like Particles  
▪ arXiv: 1708.00443v2 

▪ Axion models that could explain the muonic 
(g-2) anomaly 
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Axions at the LHC

Beam Dump

Cosmology

LEP LHC (Pb-Pb)

H->aa

muon (g-2)

▪ Search for axion-like particles with masses from 10 MeV to 1 TeV using colliders
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Axions at the LHC

Light-by-light in p-p

Light-by-light 	
In Pb-Pb 	

muon (g-2)

▪ Search for axion-like particles with masses from 10 MeV to 1 TeV using colliders
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Axions at the LHC

▪ 5 GeV < mA < 1 TeV:  
▪ Light-by-light scattering

Light-by-light in p-p

Light-by-light 	
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muon (g-2)

▪ Search for axion-like particles with masses from 10 MeV to 1 TeV using colliders
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Axions at the LHC

▪ 5 GeV < mA < 1 TeV:  
▪ Light-by-light scattering

▪ 50 MeV < mA < 62 GeV: 
▪ Anomalous Higgs boson 

decays into four photons

Light-by-light in p-p
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In Pb-Pb 	

muon (g-2)
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▪ Search for axion-like particles with masses from 10 MeV to 1 TeV using colliders
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Axions at the LHC

Beam Dump

Cosmology

LEP LHC (Pb-Pb)

H->aa

muon (g-2)

Light-by-light in p-p

Light-by-light 	
In Pb-Pb 	

muon (g-2)

H->aa

Faser

▪ Search for axion-like particles with masses from 10 MeV to 1 TeV using colliders
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Axions at the LHC

▪ 10 MeV < mA < 400 MeV  
▪ Search for ALPs at the 

FASER experiment

Beam Dump

Cosmology

LEP LHC (Pb-Pb)

H->aa

muon (g-2)

Light-by-light in p-p

Light-by-light 	
In Pb-Pb 	

muon (g-2)

Light@LHC	
ERC Proposal	
Preliminary

Light-by-light in p-p

Light-by-light 	
In Pb-Pb 	

muon (g-2)

Light@LHC	
ERC Proposal	
PreliminaryH->aa

Light-by-light in p-p

Light-by-light 	
In Pb-Pb 	

muon (g-2)

H->aa

Faser

▪ 5 GeV < mA < 1 TeV:  
▪ Light-by-light scattering

▪ 50 MeV < mA < 62 GeV: 
▪ Anomalous Higgs boson 

decays into four photons

▪ Search for axion-like particles with masses from 10 MeV to 1 TeV using colliders



Light by Light 
Scattering
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Typical Di-Photon Events in  
ATLAS and CMS

▪ Typical di-photon events in ATLAS are  
▪ high energetic, i.e. >20 GeV 
▪ come along with significant 

hadronic activity at the 
interaction vertex 

▪ Important: Low mass axions lead 
▪ To super low energetic photons 

(which cannot be easily 
detector with standard 
algorithms) 

▪ to super collinear photons if 
boosted (which cannot be 
easily separated)
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Electromagnetic interactions in  
p+p and Pb+Pb collisions 

▪ Typical Heavy Ion Collisions are a 
huge mess 

▪ Ion and proton beams with 
relativistic energies generate large 
EM-fields 

▪ photon-induced reactions 
▪ Pb ions/protons escape into the 

beam pipe without remnants in 
the ATLAS detector 

▪ in “ultra-peripheral collisions”: 
impact parameter is large 
▪ → suppress strong interactions

[Fermi, Nuovo Cim. 2 (1925) 143]   
[Weizsacker, Z. Phys. 88 (1934) 612] 

[Williams, Phys. Rev. 45 (10 1934) 729]
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Search for Light-by-
Light Scattering

▪ Light-by-light scattering in ultra-
peripheral Pb+Pb collisions 
▪ arxiv:1702.01625 
▪ arxiv:2008.05355 

▪ Idea based of this measurement 
based on [D. d'Enterria et al. PRL 111 
(2013) 080405]  
▪ Follow up in [A. Szczurek et al. PRC 93 

(2016) 4, 044907] 

▪ What do we expect in the detector? 

▪ Two photons and nothing else in the 
detector 
▪ ET > 3 GeV and |η| < 2.37 
▪ mɣɣ > 6 GeV, pT,ɣɣ < 2 GeV  

▪ The Pb-ions would be scattered 
under a very small angle

▪ Veto event if it has charged tracks 
with hit in pixel 

▪ Back-to-back photons  
▪ Acoplanarity = 1 − Δφ / π < 0.01   

(reduces CEP background )
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Light-by-Light 
Scattering Candidate

▪ …
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Observation of Light-
by-Light Scattering

▪ 97 selected candidate events  
▪ a signal expectation of 45  
▪ a background expectation of 27 

events 

▪ x-sec measured in fiducial region 
▪ σfid = 120±17(stat.)±13(syst.)±4(lumi.) 
▪ σSM = 80 ± 8 nb  

▪ Light-by-light scattering results at the 
LHC can be reinter-pretated in upper 
bounds for axion-models



Higgs To Axion 
Decays
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Higgs Boson 
Decays into Axions

▪ Convention: Axions couple to Higgs 
▪ Inhibits a certain model dependence 

▪ State-of-the-art photon identification 
does not work for 
▪ Highly collimated photons 
▪ Axions decay close to the calorimeter 

▪ Strategy: 
▪ High mass range (5-60 GeV) 
▪ Look for 3-4 Photon events 

▪ Low mass range (100 MeV - 5 GeV) 
▪ Try to separate close-by photons with 

neural network based classifiers 
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Some words on 
model-dependence

▪ Most axion models inhibit a certain 
model dependence 
▪ Exception: Axion-photon production 

▪ Which axions could explain (g-2)μ 
▪ Requires coupling muons 
▪ Problem: wrong sign! 

▪ Solution: also coupling to photons 
▪ Wilson coefficient Cγγ needs to 

sufficiently large 

▪ How about the assumption that axions 
couple to Higgs? 
▪ Trivially realized by loops: almost in 

every axion model the case 
▪ Sensitivity depends in the Wilson 

coefficient Cah, that describes the axion-
Higgs coupling.  

▪ I used |Cah |/Λ2 = 0.01 TeV−2

https://arxiv.org/pdf/1704.08207.pdf
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Identify Merged 
Photons

▪ NN based classifier using shower-shapes of the electromagnetic calorimeter 

▪ Training data 
▪ Single Photons from Data and MC 
▪ Merged Photons only from MC 
▪ Systematics by varying shower shapes and Z→ee𝛾 events
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How about displaced 
photon signatures?

▪ Problem: how do 
we know the 
ATLAS detector 
response for 
displaced 
photons? 

▪ Idea: Compare 
shower-shape 
variables of 
identified K-long 
decays  

▪ Treat difference as 
systematic
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High Mass Region 
(5-62 GeV)

▪ Prompt decays (large gayy couplings): 4 standard „tight“ photons 
▪ Super small background 

▪ Long-lived axions (smaller gayy coupling): >1 standard „tight“ photon, 3 loose/
displaced photons 
▪ Background estimated using simple sideband approach
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Medium Mass 
Region (1-5 GeV)

▪ Photons from axion decays start to appear merged 
▪ Simultaneously study two regions 
▪ 1 single photon + 1 merged photon 
▪ 2 merged photons 

▪ Background estimation again with a simple sideband approach
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Do we see 
something?

▪ Most stringent limits and first limits on ALP models with large lifetimes! 

▪ Why didnt we find axions here? Well, because they are simply not there… 
▪ … but there is a small parameter region left unprobed
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Low Mass Region (0.1-1 GeV) -  
I hereby apply for dinner!

▪ My summer 2023 at SUNY: Select H→𝛾𝛾 events (2 Single) and reinterpret the 
those for very low axion masses 
▪ Highly collinear axions will pass the standard single photon selection 
▪ Based only on public results only, but I hope to bring this through ATLAS :)
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We need to leave 
ATLAS for the Rest…

To probe this, 
we need FASER



Future Axion Searches and 
finally Gravitational Waves
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The FASER Experiment

▪ LHC was designed to search (and study) for heavy strongly coupled particles 
▪ Existing experiments well suited for this, and performing well 

▪ Huge number of light SM hadrons in the LHC collisions are produced in the forward 
direction  
▪ Weakly coupled, light new particles (dark sector) 
▪ Weak coupling means very rarely produced, and long-lived 
▪ Neutrinos produced in hadron decay 
▪ Weak coupling means rarely interacting
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The FASER Detector System

▪ FASER is situated ~500m from the 
ATLAS collision point (ƞ > 9.2) 
▪ on the beam collision axis 
▪ 0.6T permanent dipole magnets 
▪ 1.5m long decay volume 
▪ 2.5m long tracker (96 ATLAS SCTs) 
▪ Scintillators for veto, trigger, and 

preshower (particle ID) 
▪ 4 LHCb calorimeter modules 

▪ Tungsten-emulsion FASERν detector 
for additional neutrino sensitivity
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Search for Axion Like Particles: 
Signal and Selection

▪ Currently sensitive to axion-like particles (ALPs) coupling to SU(2)L 
gauge bosons 

▪ Mainly produced in B meson decays in our sensitivity range 
▪ Signature: as a → γγ appearing from ‘nothing’ with ~TeV of energy 
▪ Can decay anywhere in FASER
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Search for Axion Like Particles: 
Signal and Selection

▪ Selection 
▪ Nothing in all 5 veto counters 
▪ Evidence of EM shower in preshower  
▪ > 1.5 TeV in calorimeter 
▪ In time with LHC collision

▪ Background 
▪ Neutrino interactions 
▪ Neutral hadrons 
▪ Large-angle muons 
▪ Non-collision / cosmics

▪ Data control regions and simulation used in blinded analysis to evaluate backgrounds
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Search for Axion Like Particles: 
Signal Region and Limits

▪ New Results for Moriond 2024 

▪ Observed 1 event in 58 fb-1 
after unblinding 

▪ Expecting 0.4 ± 0.4 from CC 
ν interactions in pre-shower 

▪ Probing new parameter 
space of this ALPs Model 

▪ Further Information: 
▪ https://faser.web.cern.ch/physics/

publications



Future Axion Searches and 
finally Gravitational Waves
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Recap of Searches with 
Cavities: ADMX, Haystack 

▪ Galactic halo axion (or ALP DM) 

▪ photon conversion in cavity within a B-
field if resonant 

▪ Galactic halo axions have speeds 
β=10-3: 1.2 kHz spread in frequency

▪ Experimental Challenges 

▪ Signal Power: P=10-24W 
▪ Only few kHz band-width can be 

observed at one time 
▪ Scanning required (tunable Cavity)

Biber: The Search for Ultralight Bosonic Dark Matter
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SUPAX: A New 
Experiment in Bonn

▪ Use new 14T Magnet with a bore 
diameter of 100 mm 

▪ Idea: To reduce noise, use a 
superconducting cavity 
▪ First time for an axion search experiment 
▪ Signal Power 10-24W,  
▪ Q-Factor 106  

▪ Study only one frequency: 8-10 GHz 
30 𝜇eV to 40 𝜇eV 
▪ Advantage: We do not need to tune the 

cavity and keep the Q-Factor high 
▪ Disadvantage: we need to be extremely 

lucky that we search at the right axion 
mass



Prof. Dr. M. Schott (University of Bonn) 45

SUPAX: First Results and  
expected Sensitivity

▪ Dark Photons can convert within the 
SUPAX Cavity without B-field 
▪ First run sets limits on mixing parameter 

χ < 9.88·10-14 for mA=34.34 μeV 

▪ Expect first data-taking with magnet 
in the coming months 
▪ Close to QCD Axion band when 

scanning one frequency 
▪ Developments for tunable cavity are 

ongoing  

▪ … does this experiment makes 
sense? 
▪ Yes, because it is interesting R&D for 

superconducting cavities 
▪ … and clearly for HFGW 
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Gravitational Wave Landscape
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GravNet  
A first dedicated effort 
probing high-frequency 
gravitational waves 
https://www.pi.uni-bonn.de/gravnet/

G
ravNe
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How to detect high frequency 
gravitational waves?

‣ Gravitational waves convert to photons in presence of magnetic fields
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How to detect high frequency 
gravitational waves?

(1)  HFGWs may sweep through frequency space 
‣ Built the optimal detector for one frequency

‣ Gravitational waves convert to photons in presence of magnetic fields

‣ If photon matches resonance frequency of cavity, signal is enhanced and 
detectable
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How to detect high frequency 
gravitational waves?

(1)  HFGWs may sweep through frequency space 
‣ Built the optimal detector for one frequency

‣ Gravitational waves convert to photons in presence of magnetic fields

‣ If photon matches resonance frequency of cavity, signal is enhanced and 
detectable

Source
Expected signal 
power: <10-24 W

(2)  HFGWs yield coherent signals across Earth 
‣ Built a network of optimal detectors

GW
B0
→

Strong static 

Photons generated 
at  f = fGW

G
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How does a network of detectors help?

Number of Detectors
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— Linear 
— Analysis 
— Sqrt(N) 

Time Domain [10ms]

N = 3 Cavities

Time Domain [10ms]

N = 25 Cavities

▪ Input data of one cavity 
▪ FFT of data in time-intervals 
▪ Signal power per time-interval as time-series 
▪ Future: Use directly recorded voltage as input 

▪ Combine data of all cavities/experiments 
using an attention NN

GravNet -  If you have a magnet on site, we 
are happy to provide you with a GW detector
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How to get even more sensitive?

▪ Signal Power of the axion in the 
cavity is given by 

▪ Large volume and high magnetic 
fields drive the sensitivity  

▪ Where can we find large volumes 
with high magnetic fields? 
▪ CMS! 

▪ Problem: I guess CMS doesn’t want 
to give up its LHC physics program 
▪ e-Print: 2209.12024 (in case you 

want to know what one could get) 
▪ … Let’s see what the future brings 
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Summary
▪ ALPs are certainly a hot topic 
▪ Gravitational Waves might be even hotter 
▪ Lets combine efforts! GravNet is open to new 

members 

▪ Some personal statements 
▪ Search for vaguely motivated new particles 

seems to me a waste of time during HLLHC 
▪ LHC searches will (have to) move to 

search for long-lived particles  
▪ IMHO: The future lies in precision physics!  
▪ Lepton collider  

▪ Thanks to the ERC, which allowed this 
research
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Light Through Wall



Prof. Dr. M. Schott (Johannes Gutenberg University, Mainz) 52

Robert A J Matthews 
(Birmingham) Eur.J.Phys.16 (1995) 



Prof. Dr. M. Schott (Johannes Gutenberg University, Mainz) 53

Robert A J Matthews 
(Birmingham) Eur.J.Phys.16 (1995) 


