

CEPC vertex Detector

Zhijun Liang

中國科學院為能物品加完所 Institute of High Energy Physics Chinese Academy of Sciences

Aug. 7th, 2024, CEPC Detector Ref-TDR Review

Preliminary outline for Vertex section @ reference TDR

Chapter 3 Vertex

- **3.1 Physics Requirements**
- 3.2 Technology survey and our choice
- 3.3 R&D efforts and results
- 3.3.1 CMOS Stitching
- 3.3.2 CMOS normal chip
- 3.4 Detailed design including electronics, cooling and mechanics
- 3.4.1 Layout
- 3.4.2 CMOS sensor design
- 3.4.3 Cooling and mechanics
- 3.5 Readout electronics
- 3.5.1 background estimation
- 3.5.2 Data rate and readout scheme
- **3.6 Performance from simulation (impact parameters)**

Cooling update

For the innermost layer (R=11mm), it is quite close to the beam pipe(R=10.7mm), the air cooling simulation has been conducted.

- Power dissipation: 50 mW/cm 2 , 40 mW/cm 2
- Inlet air temperature 5 $\,^\circ\!\mathrm{C}$
- Inlet air velocity varys from 3 m/s to 7 m/s (Second layer involved, beam pipe temperature ignored)

- To air cool the innermost layer detector within 20 °C seems feasible. Temperature gradient should be controlled in a certain level from safety point view?
- More to be studied !

Update on mechanics design

- More update on mechanics design with support ring structure
- Start refining layout layout to reduce dead area

by Jinyu Fu

Alignment and software framework are identified as important issue

Beam pipe

Beam pipe design talk from 洛阳 Mechnics workshop

- Optimzed for inner beam pipe thickness (<20 C and <100kPa)
- 0.2mm beam pipe thickness for water cooling ,0.3mm for oil cooling option
- Significant rate for water corroding the beam pipe (~10um per year)
- Expect more study on plasma coating for beam pipe protection from water
 - Expect to reduce the rate by two order of magnitude ?

By 何龙岩

冷却通道宽度/mm	外铍管最高温度	外铍管最高温度	冷却通道宽度/mm	压降(油冷)/KPa	压降(水冷)/KPa	
	(油(ぞ)/℃			1254.11	698.03	
0.1	21.7	17.9	0.15	363 03	199.28	
0.15	21.6	17.9	0.15	167.04	02.02	
0.2	21.1	17.7	0.2	167.04	92.83	
0.25	20.3	17 5	0.25	94.76	52.67	
0.25	10.9	17.5	0.3	55.26	30.88	
0.5	19.8	1/.4	0.25	26.15	20.24	
0.35	19.2	17.2	0.55	30.15	20.34	

Collider Ring RF Parameters (low lumi Z)

Bunch spacing for low-lumi-Z (10MW) confirmed to be 69ns (3* 23ns)

30/50 MW SR power per beam for	ttbar 30/50 MW		Higgs	14/	7	7
for the two rings. W/Z separate cavities. HL-Z cavities bypass.	New cavities	Higgs cavities	30/50 MW	30/50 MW	10 MW	2 30/50 MW
Luminosity / IP [10 ³⁴ cm ⁻² s ⁻¹] 0.5		/ 0.8	5 / 8.3	16 / 26.7	38	<mark>115</mark> / 192
RF voltage [GV]	10 (6.1	+ 3.9)	2.2	0.7	0.12	0.12 / 0.1
Beam current / beam [mA]	3.4	/ 5.6	16.7 / 27.8	84 / 140	267	<mark>801</mark> / 1345
Bunch charge [nC]	3	2	21	21.6	22.4	22.4 / 34.2
Bunch length [mm]	2.9		4.1	4.9	8.7	8.7 / 10.6
650 MHz cavity number	192	336	192/336	96 / 168 / ring	48 / ring	30 / 50 / ring
Cell number / cavity	5	2	2	2	2	1
Gradient [MV/m]	27.6	25.2	24.9 / 14.2	15.9 / 9.1	5.4	17.4 / 8.7
$Q_0 @ 2 K$ at operating gradient	3E10	3E10	3E10	3E10	3E10	2E10
HOM power / cavity [kW]	0.4 / 0.66	0.16 / 0.26	0.4 / 0.67	0.93 / 1.54	1.9	2.9 / <mark>6.2</mark>
Input power / cavity [kW]	188 / 315	71 / 118	313 / 298	313 / 298	206	1000
Optimal Q∟	1E7 / 6E6	9E6 / 5.4E6	1.6E6 / 9.5E5	8E5 / 2.7E5	1.4E5	1.5E5 / 3.8E4
Optimal detuning [kHz]	0.01 / 0.02	0.02 / 0.03	0.1 / 0.2	0.7 / 2	7	6.7 / 21.7
Cavity number / klystron	4 / 2	2	2	2	2	1
Klystron power [kW]	800	800	800	800	800	1200
Klystron number	48 / 96	168	96 / 168	96 / 168	48	60 / 100
Cavity number / cryomodule	4	6	6	6	6	1
Cryomodule number	48	56	32 / 56	32 / 56	16	60 / 100
Total cavity wall loss @ 2 K [kW]	12.1	7.1	3.9 / 2.3	1.6 / 0.9	0.1	0.45 / 0.2

Ref: Jiyuan Zhai, CEPC workshop-EU 2024

Impact of vertex detector on tracking

 $\sigma(P_t)/P_t$ vs P_t at polar angle = 85°

Items in meeting with IDRC chair

- Total area and Timeline for ALICE ITS3, should compare with CEPC vertex
 - ALICE ITS3 timeline is about 2~3 years earlier (ITS3 2032installation)
 - ITS3: 0.06 m², CEPC: 0.15 m²
- Material budget for normal ladders (especially for carbon fiber)
 - mu3E ladders has 0.1% X0 per layer (we quoted 0.25% X0 per layer)
 - Carbon fiber thickness in CEPC prototyping can reach 0.12mm, same level as mu3E

Accessibility for 65/55 nm technology in China

- TowerJazz 65nm CIS can be submitted by TJ agency in China
- R & D of SMIC 55nm technology is on going

Serial powering is widely used in ATLAS/CMS upgrade, should look into it

- Wei Wei's talk will compare DC/DC and Serial powering scheme

Data rate estimation of CEPC VTX

	Data rate@triggerless (old result, 30MW)	Data rate@triggerless (new result, 50MW)
Higgs (240GeV)	0.43 Gbps	>1Gbps
	Old	New

Bunch structure of ZH runs was not taken into accounted

- **Bunch structure** *ⓐ* **ZH: 50% duty cycle (10ms with collision; 10ms without collision)**
- > Old result was average data rate (underestimated)
- > New result will double the data rate
- > Old result was using **30MW**, new result is using **50MW**
- > In new estimation, Even Higgs run has rate above 1Gbps per chip
- > Triggerless scheme may needed to reconsidered

Update in CEPCSW

Stitching layer layout is implemented in CEPCSW

- Dead area is also considered
- Digitization is OK now, can be used for BG simulation
- Code for reconstruction is still under development
 Module->Layer

Chip design for ref- TDR and power consumption

Power consumption

- Fast priority digital readout for 40MHz at Z pole
- 65/55nm CIS technology
- Power consumption can reduced to ~40mW/cm²
- Air cooling feasibility study
 - Baseline layout can be cooled down to ~20 °C
 - Based on 3 m/s air speed, estimated by thermal simulation

	_	≤25.7 mm						
;		Pixel Matrix: 25.6 mm × 12.8 mm						
	15.9 mm							
		A(0.03, 2.30)						
		B(0.03, 1.05)						
		Periphery Readout : 25.6 mm × 1.1 mm						
		DACs: 1.5 mm × 0.5 mm DataTrans: 1.3 mm × 0.6 mm						
	0(0	, 0) D(0.43, 0.57) C(13.52, 0.40)						

	Matrix	Periphery	DataTrans.	DACs	Total Power	Power density
TaiChu3 180nm chip @ triggerless	304 mW	135 mW	206 mW	10 mW	655 mW	160 mW/cm ²
65nm for TDR @ 1 Gbps/chip (TDR LowLumi Z)	60 mW	80 mW	36 mW	10 mW	186 mW	~45 mW/cm ²

Update of chip design

Got the Design kit for TJ 65nm (p type standard process)

- Can start the pixel layout design
 - Pixel size estimation and power consumption estimation
- Two small issue for 65nm design kit from TowerJazz China
 - Substrate resistance only up to 0.13kOhm (it was 1k Ohm in TJ 180nm CIS)
 - Only support 4 metal layers (ALICE ITS3 was using 7 metal layers)
 - Do not support modified process

By Ying Zhang

Feedback from Christine Hu

Feedback from Christine Hu :

- Needed to careful about the yield in stitching design

ALICE ITS3 proposal on stitching design

Our preliminary proposal on stitching design

Preliminary outline for Vertex section @ referenece TDR

- 3. Vertex detector (Zhijun & Meng Wang)
- a. Requirements (position and vertex) Zhijun , Manqi
- b. Technology survey and our choices (both baseline & backup options), Zhijun & Meng
- c. R&D efforts and results
 - →CMOS Stitching: Meng Wang
 - \rightarrow CMOS normal chip: Zhijun, Wei Wei, Yupeng
- d. Detailed design including electronics, cooling and mechanics
 - → Layout: Zhijun & Meng Wang
 - → CMOS sensor design: Wei Wei, Ying Zhang, Yunpeng
 - \rightarrow Cooling and mechanics: Jinyu Fu
- e. Readout electronics & BEC
 - →Background estimation : Haoyu Shi
 - \rightarrow Data rate and readout scheme: Jun Hu, Wei Wei
- f. Performance from simulation (impact parameters). Chengdong Fu