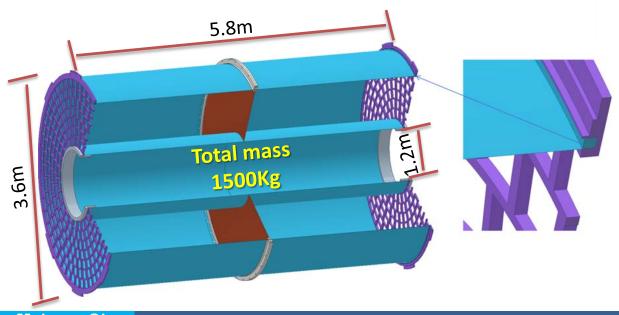
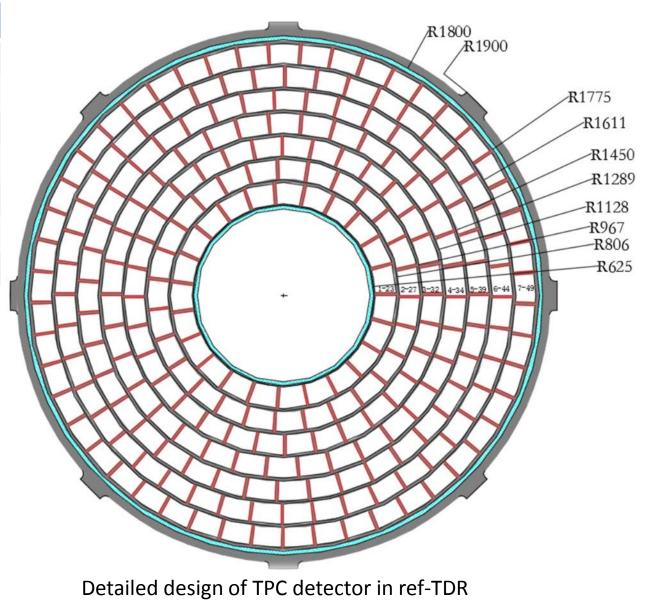


Gaseous detector chapter towards CEPC TDR

Huirong Qi and Linghui Wu Weekly meeting of CEPC TDR Group, August 27, 2024

- Updated design of TPC for TDR
- Abstracts submitting to CEPC2024

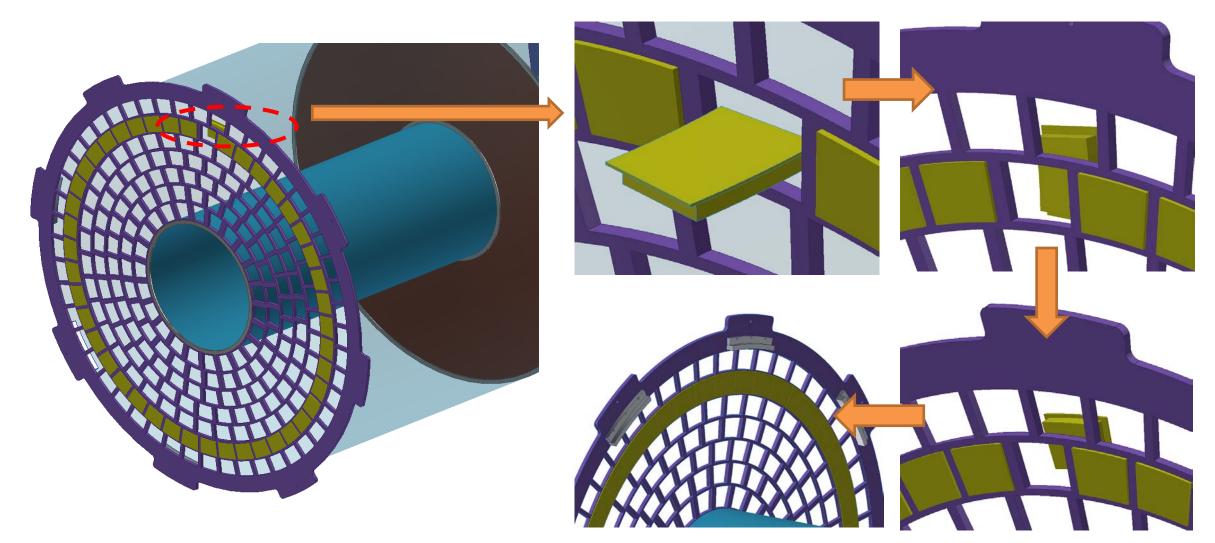

Updated gaseous detector part in TDR


Chapter 5 Gaseous trackers

5.1	Physics requirements and detection technology				
	5.1.1	Physics requirements of Higgs and Tera-Z			
5.1.2		Technology choice and the baseline track detector			
5.2	Pixelated readout TPC detection				
	5.2.1	TPC detector and readout electronics			
	5.2.2	Mechanical and cooling design			
	5.2.3	Challenges and critical R&D			
	5.2.4	Detector modules toward the validation prototype			
5.3	mance of TPC tracker				
	5.3.1	Overall of the simulation framework			
	5.3.2	Spatial resolution and PID performance			
	5.3.3	Improvement using the machine learning algorithm			
5.4	Altern	tive track detector of Drift Chamber in Tera-Z			
	5.4.1	PID for high luminosity Z pole at 2T			
	5.4.2	Performance and critical R&D			
5.5	Cost e	stimation			

Updated design of TPC mechanics for TDR

TPC detector	Key Parameters		
Modules per endcap	248 modules /endcap		
Module size	206mm×224mm×161mm		
Geometry of layout	Inner: 1.2m Outer: 3.6m Length: 5.9m		
Voltage of Cathode	- 62,000 V		
Operation gases	T2K: Ar/CF4/iC4H10=95/3/2		
Total drift time	34μs @ 2.75m		
Pixelated detector	Pixelated Micromegas		



Huirong Oi

Optimization of TPC module mechanics for TDR

- The mounting of the readout modules requires the specific robot arm to assemble.
 - Minimum gaps in the readout module boundary.

Optimization of TPC assembly

- Programme for the installation of TPC detector (**Standalone**)
 - 1. Sealing connection between barrel and endcap
 - 2. Test the sealed of the barrel
 - 3. Fixed TPC using auxiliary supporting
 - 4. Installation of TPC readout modules
 - 5. Integral sealing test
 - 6. Testing the TPC modules
 - 7. Overall equipment installation

Abstracts submitting to CEPC2024

	Presenter	Title	Region	Status	
1	Huirong Qi	Progress of CEPC TPC Towards the TDR	China	Submitted	
2	Mingyi Dong	Status of CEPC DC	China		Confirmed
3	Guang Zhao	Machine Learning for Gaseous Tracker dN/dx Reconstruction	China	Submitted	
4	Zhi Deng	Low power readout ASIC R&D	China		Confirmed
5	Xin She	Studies of TPC detector prototype for the future collide	China	Submitted	
6	Yue Chang	Pixelated readout gas detector for PID	China	Submitted	
7	Canwen Liu	Status of FEE ASIC for TPC	China		Confirmed
8	Jinxian Zhang	Analysis of BK for TPC at the high luminosity Z pole on CEPC	China	Submitted	
9	USTC	MPGD R&D	China		Confirmed
10	SDU	IBF R&D	China		Confirmed
11	CIEA	Micromegas R&D	China		Confirmed
12	PKU	GEM R&D	China		Confirmed
13	SJTU	TPC R&D	China		Confirmed
14	NIKHEF	GridPix TPC	Netherlands		Confirmed
15	CEA-Saclay	Т2К ТРС	French		Confirmed
16	INFN	DC R&D	Italy		Confirmed
17	INFN	DC electronics R&D	Italy		Confirmed
18	КЕК	MPGD TPC R&D	Japan		Confirmed
19	CERN	MPGD R&D	CERN	Invi	ting

Many thanks!