The state-of-the-art quantum technology

The Transformer & its Applications to High Energy Physics Problems

Abdualazem Fadol Mohammed

October 21, 2024

Introduction

Transformer Architecture

Hybrid-Quantum Transformer

Quantum Transformer

Summary

<u>Credited to Thomas Prior for TIME</u>

Introduction

Background & Motivation:

- O HEP: Understanding fundamental particles and forces. O Large datasets, complex computations, advanced simulations.
- O Transformers in HEP: event classification and pattern recognition.

Why Integrate Quantum Computing with Transformers in HEP?

- O Massive amounts of data require substantial computational power.
- O Quantum-enhanced transformers may offer better performance in processing and analysing HEP data. O Integrating cutting-edge quantum technologies.
- ON

Goals and Objectives:

- O Leveraging quantum computing for improved models.
- Combining classical and quantum computations.
- O Design and evaluate hybrid models & develop quantum algorithms.

Classical Transformer

- Unlike the original transformer,
- it consists of an encoder only.

Hybrid-Quantum Transformer

] Quantum Embedding Layer:

- O Variational quantum circuit
- O Inputs are encoded as rotational angles
- **O** Randmoly initiated weights $(\vec{\theta})$

] Measurements:

- Counts which is normalised $-2^{n-qubits}$.
- **O** Measuring Pauli bases for each qubit.
-] The quantum circuit is computed *N* times.

Hybrid-Quantum Transformer

- ☐ It is similar to the classical transformer.
- ☐ We add a quantum embedding layer.
- It encodes the input dataset.
- Then, pass them to a linear layer.

Quantum self-attention:

- Initial quantum circuit to encode the input Ο
- **O** Three Ansatzes circuits to get the K, Q, and V
- O Each circuit is initialised with a different weight

A quantum self-attention inspired by <u>ArXiv: 2205.05625</u>.

Using a quantum self-attention instead of the multi-head attention.

Datasets: CEPC

 $\Box \text{ The signal } (e^+e^- \to ZH \to \gamma\gamma jj) \& \text{ background } (e^+e^- \to (Z/\gamma^*)\gamma\gamma) \text{ with 5ok events}$

Hybrid-Quantum Transformer

- ☐ Total number of events: 50k.
- Training, validation, and testing: 28k, 12k, and 10k
- □ Number of variables: six
- L rate & batch: 0.001 & 100

Architecture:

- $O_{d_{FF}} = 10$
- **O** Dropout = 0.1
- **O** iL = 2
- **O** *h* = 8
- O Embedded dimension: 512

Total time for the training and validation: 71h:43m:57s

Transformer & Hybrid-Quantum Transformer

Transformer & Hybrid-Quantum Transformer

Transformer & Hybrid-Quantum Transformer

- Total number of events: 50k.
- Training, validation, and testing: 28k, 12k, and 10k
- □ Number of variables: six
- L rate & batch: 0.001 & 100

Architecture:

- $O_{d_{FF}} = 10$
- **O** Dropout = 0.005
- **O** iL = 2
- $O_D = 3$

Total time for the training and validation: 22h:5m:5s

Discussed transformers and different types of quantum transformers.
Explained the integration of a quantum layer into the transformer architecture.
Described the use of variational quantum circuits for enhancing attention mechanisms.
Presented the performance comparison between hybrid-quantum and classical transformers.

