

CMS jet tagging

Zhenxuan Zhang 1

Working group meeting

outline

Introduction

- AK4 jets tagging
 - DeepCSV model
 - DeepFlavour model
- AK8 jets tagging
 - DeepAK8 model
 - ParticleNet model
 - ParticleTransformer model

- Calibration of the taggers
 - SFsBDT method
 - LundJetPlane method

Introduction

- Jet is one of the most ubiquitous but also fascinating objects at the LHC
- Very common in CMS to use ML method to tag jets:
 - heavy flavour tagging (bottom/charm)
 - heavy resonance tagging (top/W/Z/Higgs)
 - quark/gluon discrimination
 - ...
- One of the most active areas for ML
 - lots of deep approaches have been proposed in the past few years
 - trending: low-level inputs + deep learning

AK4 jets tagging

- DeepCSV model(CMS DP 2017-005 <u>cds.cern.ch/record/2255736</u>):
 - Pure deep NN, multi-classification with combine secondary vertex inputs
- DeepFlavour model (CMS DP 2017-013 cds.cern.ch/record/2263802)

• Larger inputs, deeper NN + convolutional,

recurrent layers

Best so far

AK8 jets tagging - DeepAK8

- The DeepAK8 algorithm is a multiclassifier to discriminate jets from W/Z/H/t/other, the main classes are subdivided to minor categories, e.g. Z->bb, Z->cc.
- Model with CNN layers

- Two list of input for each jet:
- 1. 100 jet constituents, order by decreasing transverse momentum, 15 features for each particle
- 2. Up to 7 SecondaryVertexes (SVs), ordered by 2D secondary ImpactParameter significance, 15 features for each SV

AK8 jets tagging - ParticleNet

- The ParticleNet algorithm is a Dynamic Graph Convolutional Neural Network
- The jet can be seen as a ParticleCloud, unordered set of entities irregularly distributed. The elements are correlated and with a rich internal structure, taking into account non additive features.
- Imaged based to particle based:
 - no loss of information from pixelation
 - straightforward to include any kind of features for each particle
 - constituent particles of a jet are intrinsically unordered — permutation symmetry!
- Better than DeepAK8!

AK8 jets tagging - ParticleTransformer

- The ParticleNet algorithm is an attention based Neural Network
- Input embedding: Not only inject single particle information, but also include pairwise feature
- Better than ParticleNet!
- Updating:
 - Implementation in the CMSSW
 - GloParT3 -> transfer learning with all classes

	All classes		$H o b ar{b}$	$H \to c \bar{c}$	H o gg	$H \rightarrow 4q$	$H \to \ell \nu q q'$	$t \to bqq'$	$t \to b \ell \nu$	$W \to qq'$	Z o q ar q
	Accuracy	AUC	$\mathrm{Rej}_{50\%}$	$\mathrm{Rej}_{50\%}$	$\mathrm{Rej}_{50\%}$	$\mathrm{Rej}_{50\%}$	$\mathrm{Rej}_{99\%}$	$\mathrm{Rej}_{50\%}$	$\mathrm{Rej}_{99.5\%}$	$\mathrm{Rej}_{50\%}$	$\mathrm{Rej}_{50\%}$
PFN	0.772	0.9714	2924	841	75	198	265	797	721	189	159
P-CNN	0.809	0.9789	4890	1276	88	474	947	2907	2304	241	204
ParticleNet	0.844	0.9849	7634	2475	104	954	3339	10526	11173	347	283
ParT	0.861	0.9877	10638	4149	123	1864	5479	32787	15873	543	402
ParT (plain)	0.849	0.9859	9569	2911	112	1185	3868	17699	12987	384	311

Global Particle Transformer 3

(GloParT 3)

Congqiao Li for the Tagger dev working group

Brown U: Loukas Gouskos,

Caltech: Zichun Hao,

CERN: Santeri Laurila, Huilin Qu,

IHEP: Mingshui Chen, Zhenxuan Zhang,

INFN & UniMiB: Raffaele Gerosa,

PKU: Antonis Agapitos, Dawei Fu, Qilong Guo, Congqiao Li, Qiang Li,

Chengyang Pan, Sitian Qian, Yuzhe Zhao, Chen Zhou,

UCSD: Stephane Cooperstein, Javier Duarte, Raghav Kansal,

Farouk Mokhtar, Mellisa Quinnan,

UVA: Cristina Mantilla Suarez,

VUB: Alexandre De Moor, Denise Muller

CMS BTV Meeting

20 September, 2024

Calibration tagger

Model Performance discrepancy from data and MC

- Need to calibrate MC to data to for consistent performance
- SFsBDT method:
 - Use in boosted jet flavor tagging like X->bb, X->cc
 - Use in proxy jets from gluon splitting to a pair of bottom or charm quarks.
 - Can't use for multiple subjets cases (>=3)
- Lund jet plane reweighting method:
 - Use primary lund-plane regions to extract reweighting factors for each subjet
 - Works for multiple subjets cases
 - large systematic uncertainties -> no harm for search analysis

