

Reconstruction at future electron positron collider

Manqi

Jets @ CEPC

- Massive Four in Standard Model:
 - Z & W: ~ 70% goes to a pair of jets
 - Higgs: ~90% goes to jet final states
 - Top: $t \rightarrow W + B$

Identification of all jet species...

- Jet origin identification: 11 categories (5 quarks + 5 antiquarks + gluon)
- Full Simulated vvH, Higgs to two jets sample at CEPC baseline configuration: CEPC-v4 detector, reconstructed with Arbor + ParticleNet (Deep Learning Tech.)

Performance with different PID scenarios & H→ss measurements

Flavor tagging: type that maximize {L_q + L_q_bar, L_g}

If quark jet: jet charge ~ compare {L_q, L_q_bar}

Remark: current jet flavor tagging efficiency & jet charge flip rates are projections of the 11-dim arrays produced by Jet origin id

Benchmark analyses: Higgs rare/FCNC

TABLE I: Summary of background events of $H \to b\bar{b}/c\bar{c}/gg$, Z, and W prior to flavor-based event selection, along with the expected upper limits on Higgs decay branching ratios at 95% CL. Expectations are derived based on the background-only hypothesis.

	Bkg. (10^3)			Upper limit (10^{-3}) $s\bar{s}$ $u\bar{u}$ $d\bar{d}$ sb db uc ds						
	H	Z	W	$sar{s}$	$u ar{u}$	$dar{d}$	sb	db	uc	ds
$ u \bar{\nu} H$	151	20	2.1	0.81	0.95	0.99	0.26	0.27	0.46	0.93
$\mu^+\mu^-H$	50	25	0	2.6	3.0	3.2	0.5	0.6	1.0	3.0
e^+e^-H	26	16	0	4.1	4.6	4.8	0.7	0.9	1.6	4.3
$ \nu\bar{\nu}H $ $ \mu^{+}\mu^{-}H $ $ e^{+}e^{-}H $ Comb.	-	-	-	0.75	0.91	0.95	0.22	0.23	0.39	0.86

- [28] J. Duarte-Campderros, G. Perez, M. Schlaffer, and A. Soffer. Probing the Higgs-strange-quark coupling at e^+e^- colliders using light-jet flavor tagging. *Phys. Rev.* D, 101(11):115005, 2020.
 - [50] Alexander Albert et al. Strange quark as a probe for new physics in the Higgs sector. In *Snowmass 2021*, 3 2022.
- [59] J. de Blas et al. Higgs Boson Studies at Future Particle Colliders. *JHEP*, 01:139, 2020.
- [60] Jorge De Blas, Gauthier Durieux, Christophe Grojean, Jiayin Gu, and Ayan Paul. On the future of Higgs, electroweak and diboson measurements at lepton colliders. JHEP, 12:117, 2019.

For H->bb, cc, gg: results in 20 – 40% improvement in relative accuracies (preliminary)...

Next step

- Jet origin id:
 - Not only critical for Higgs measurements, but beneficial for all measurements with jets – weak mixing angle, flavor, etc.
 - "World leading performance of tagger", "A game changer and opens new horizon for precision flavor studies at all future experiments."
- Next steps:
 - Apply to Particle Flow Reconstruction, in progress
- General question from Reconstruction
 - Categorization (identification),
 - Grouping (Clustering),
 - Evaluation.

PHYSICAL REVIEW LETTERS 132, 221802 (2024)

Jet-Origin Identification and Its Application at an Electron-Positron Higgs Factory

Hao Liang[©], ^{1,2,*} Yongfeng Zhu[©], ^{3,*} Yuexin Wang[©], ^{1,4} Yuzhi Che[©], ^{1,2} Manqi Ruan[©], ^{1,2,†} Chen Zhou[©], ^{3,‡} and Huilin Qu[©], ⁸

¹Institute of High Energy Physics, Chinese Academy of Sciences, 19B Yuquan Road, Shijingshan District, Beijing 100049, China

²University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing 100049, China

³State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871, China

⁴China Center of Advanced Science and Technology, Beijing 100190, China

⁵CERN, EP Department, CH-1211 Geneva 23, Switzerland

(Received 16 October 2023; revised 26 April 2024; accepted 1 May 2024; published 31 May 2024)

Back up

Particle Net: IO

Variable	Definition					
Δ	difference in pseudorapidity between					
$\Delta\eta$	the particle and the jet axis					
$\Delta\phi$	difference in azimuthal angle between					
	the particle and the jet axis					
$logp_T$	logarithm of the particle's p_T					
logE	logarithm of the particle's energy					
$log \frac{p_T}{p_T(jet)}$	logarithm of the particle's p_T relative to the jet p_T					
$log rac{p_T}{p_T(jet)} \ log rac{E}{E(jet)}$	logarithm of the particle's energy relative to the jet energy					
ΔR	angular separation between the particle					
	and the jet axis $(\sqrt{(\Delta \eta)^2 + (\Delta \phi)^2})$					
d0	transverse impact parameter of the track					
d0err	uncertainty associated with the measurement of the ${\rm d}0$					
z0	longitudinal impact parameter of the track					
z0err	uncertainty associated with the measurement of the $z0$					
charge	electric charge of the particle					
isElectron	if the particle is an electron					
isMuon	if the particle is a muon					
isChragedKaon	if the particle is a charged Kaon					
isChragedPion	if the particle is a charged Pion					
isProton	if the particle is a proton					
isNeutralHadron	if the particle is a neutral hadron					
is Photon	if the particle is a photon					

Table 3. The input variables used in ParticleNet for jet flavor tagging at the CEPC.

Output: likelihoods to different categories