quantum simulation of lattice field theories

孙玮 中国科学院高能物理研究所计算中心

IHEP ML Workshop, 2024.10.16

Classical and Quantum Computing of Standard Model

C. Bauer, et.al, Nature Rev. Phys. 5 (2023)

First Principle Computing of Standard Model

- Lattice Field Theory: quantum field theory on the discrete space-time lattice
- Lattice QCD
 - numerical Monte Carlo method

	~		~		
Computational	Current	2025	$\operatorname{Current}$	2025	2025 Network
Task	Usage	Usage	Storage (Disk)	Storage (Disk)	Requirements (WAN)
Accelerator	$\sim 10M - 100M$	$\sim 10G - 100G$			
Modeling	core-hrs/yr	core-hrs/yr			
Computational	$\sim 100 \mathrm{M} - 1 \mathrm{G}$	$\sim 100 \mathrm{G} - 1000 \mathrm{G}$	~10PB	>100PB	$300 { m Gb/s}$
Cosmology	core-hrs/yr	core-hrs/yr			(burst)
Lattice	~1G	$\sim 100 \text{G} - 1000 \text{G}$	∼1PB	>10PB	
QCD	core-hrs/yr	core-hrs/yr			
Theory	$\sim 1\mathrm{M}-10\mathrm{M}$	$\sim 100 \mathrm{M} - 1 \mathrm{G}$			
	core-hrs/yr	core-hrs/yr			
Cosmic Frontier	$\sim 10 \mathrm{M} - 100 \mathrm{M}$	$\sim 1\mathrm{G}-10\mathrm{G}$	∼1PB	10 - 100 PB	
Experiments	core-hrs/yr	core-hrs/yr			
Energy Frontier	$\sim 100 \mathrm{M}$	$\sim 10G - 100G$	~1PB	>100PB	$300 { m Gb/s}$
Experiments	${ m core-hrs/yr}$	core-hrs/yr			
Intensity Frontier	$\sim 10 \mathrm{M}$	$\sim 100 \mathrm{M} - 1 \mathrm{G}$	∼1PB	10 - 100 PB	$300 { m Gb/s}$
Experiments	core-hrs/yr	core-hrs/yr			

Why Quantum Simulation of Lattice Field Theory

1) 临界慢化问题(critical slowing down)

ALPHA Collaboration, Nucl. Phys. B 845 (2011) 93-119

- 0.047 fm
 0.07 fm
 0.093 fm
 0.14 fm
- 格点场论需要取连续极限(格距 $a \to 0$)
- Markov Chain Monte Carlo方法天然具有 自关联性
- critical slowing down:

$$a \to 0, \, \tau_{\rm int} \to \infty$$

• 计算时间指数增加

Why Quantum Simulation of Lattice Field Theory

2) 符号问题 (sign problem)

- Hadron spectroscopy
- Madron structure
- Standard model precision test
- **...**

- **★**Strong CP violation
- ➤ Quark gluon plasma
- ➤ Finite density QCD phase transition
- ➤ Properties of neutron star

Quantum Simulation of Quantum Link Model

- Lattice QCD cannot be simulated on current quantum computers (need millions of fault tolerant qubits and quantum gates)
- The Hilbert space of quantum link model is **finite**
- We investigated the Z2 quantum link model

5 qubits Z2 quantum link model

Hybrid Quantum Classical Simulation

$$\langle O \rangle = \frac{1}{Z} \int \mathcal{D}UO'[U] \det M e^{-S_g}$$
 Solve Mx=b

Hybrid Monte Carlo algorithm: most time consuming part in classical computing (~80%)

- use HHL(Harrow-Hassidim-Lloyd) algorithm to solve linear equation Mx=b
- quantum speedup: O(N) v.s. O(log(N)) (e.g. Conjugate Gradient)
- detM on the quantum computer, others on the classical computer (hybrid quantum classical)

• work in progress with 龙沛洵

HiQuArC Project

- HiQuArC (High performance, Quantum, and Artificial intelligence Computing)
- developing a software package for lattice field theory simulation

HiQuArC

CuFT

Classical high performance simulation based on Monte Carlo method

verification

QuFT

Quantum simulation with quantum simulator and real hardware

quantum simulation

MLFT

Lattice field theory simulation based on machine learning

sampling

Summary and outlook

- Quantum simulation of simple toy model of lattice field theory is feasible on current NISQ quantum computers
- Hybrid quantum classical simulation method using HHL algorihm is working in progress
- HiQuArC project
 - Goal: developing a quantum simulation package for lattice field theories
 - three components
 - CuFT: classical high performance computing with Monte Carlo
 - QuFT: quantum simulation with quantum circuit model
 - MLFT: sampling field configuration with machine learning method
 - can serve as a SDK for quantum computing platform