
ML at JUNO
W u m i n g L u o
2 0 2 4 / 0 1 / 1 x

Wuming Luo

juno
Jiangmen Underground Neutrino
Observatory(JUNO):

Determine the neutrino mass ordering
Measure neutrino oscillation parameters
to sub-percent level
SuperNova, Solar, Atm. Geo. etc

2

M. Grassi Neptune 2018

JUNO Challenge (Quantitative)

5

KamLAND 1000 t
D. Chooz 8+22 t
RENO 16 t
Daya Bay 20 t
Borexino 300 t
JUNO 20000 t

6%/√E

8%/√E

5%/√E

DETECTOR
TARGET MASS

ENERGY
RESOLUTION

3%/√E

MUST BE LARGER

MUST BE MORE PRECISE

Need to collect large statistics  
being 50km away from source

Unprecedented light level
1200 pe/MeV

Both features
• are highly expensive (civil engineering + photocathode density)
• result in extreme detector dynamic range

Wuming Luo

detector

3

Liquid Scintillator
20kton

Central Detector*

~17,612 20” PMTs
+ ~25,600 3” PMTs
+ ~75% coverage

𝜙: 43.5m

D
ep

th
: 4

4m

Central Detector*
Acrylic sphere

Stainless steel truss

Top Tracker

Water Pool

Wuming Luo

reconstruction - PMT
PMT waveform reco (common issue for many exp.)

photon counting (classification)
time/charge reco (regression)

baseline: first_hit_time and total_charge
ideal: T/Q for every photon hit?

4

Wuming Luo

reconstruction - MeV

High precision Vertex/Energy reco in MeV region
world leading energy resolution: 3%@1MeV
model/inputs/outputs optimization
universal challenges:

PMT dark noise de-noising, information segmentation…

5

Z. Qian, V. Belavin, V. Bokov et al. Nuclear Inst. and Methods in Physics Research, A 1010 (2021) 165527

Fig. 9. The HEALPix algorithm starts by dividing the spherical surface into 12 regions: 4 around each pole, and 4 at the equator. Then, resolution can be increased by iteratively
dividing each spherical pixel into 4 sub-pixels of equal area, so that any edge of the original 12 regions is split into N

side
parts. Pixels are labeled in a nested scheme, so that subpixels

belonging to the same region have consecutive indices. In this way, a pooling operation on the discretized sphere is as efficient as the usual 1D pooling. As an example, consider
the bottom picture. Pixels belonging to the same region have similar colors, with their brightness representing different values. The pooling operation consists of aggregating all
pixels in the same region into a single value, which in this example is given by the darkest color.

For simplicity, we adopted the same convention used by the Deep-
Sphere model [47], for which Wij > 0 only if i and j are neighboring
pixels in the HEALPix discretization. The actual values for Wij are then
given by a Gaussian function:

Wij = exp

H

*

Òvi * vjÒ22
2d2

I

, d2 =
1

E

…

(vi ,vj)ÀE
Òvi * vjÒ22, (6)

where ÒxÒ
2
í

t

x
2

1
+5 + x2

n
denotes the Euclidean norm, and E is the

number of elements in the set E , i.e. the number of links in G. Note that,
since we are only connecting neighboring nodes, their distance on the
spherical surface can be locally approximated by the Euclidean norm.
Then, the average d2 of the squared distances is used to normalize the
argument of the exponential.

With this choice, the nodes are only locally connected, meaning that
W is sparse, i.e. contains mostly zeros, and so computations may be
optimized. To construct a GNN, the only strict requirement for the Wij

is to encode a connected graph, i.e. such that there is a set of edges
with non-zero Wij linking any two nodes i and j. However, we did not
investigate different choices for (6).

(3) An input sample x À RNpixùF is a signal on G, i.e. a function
mapping each node to a vector of F features.

In this work F = 2, and we consider, for each PMT, its charge
(i.e. the number of PE hits) and its first hit time, relative to the
event’s origin. If a PMT receives no hits, we assign a first hit time of
1024 ns, denoting that it is hit ‘‘at infinity’’. This value is chosen to be
significantly higher than any of the recorded first hit times in the whole
dataset, and any sufficiently large value would perform the same.

Since spherical pixels contain more than one PMT, we need to
aggregate data from several PMTs to form the feature vector xi À RF of
the ith spherical pixel. So, for every spherical pixel, we sum the charges
of all the PMTs inside it, and take the minimum of their first hit times.

(4) Before the training, we normalize each channel (charge and first
hit) in the training dataset to 0 mean and unit standard deviation. In
this way, all the features have the same order of magnitude, which is
necessary for the model to converge.

(5) Convolutions on G can be defined in many ways. In this work
we use Chebyshev Convolutional Layers [49], which use the spectral
domain of the graph to define filters.

(6) The model is implemented using the Spektral library [50] and
Tensorflow 2.2 [51] with tf.Keras.

The architecture, further referred to as GNN-J (see Fig. 10), is
inspired by that of VGG, with some minor changes in the number

Table 6
Hyperparameters for GNN-J.
Parameter Value

Loss Mean Absolute Percentage Error
Optimizer Adam (�

1
= 0.8, �

2
= 0.9)

Learning rate
<

Fixed at 0.001 for N
epoch

< 3,
then exponential decay at rate *0.1.

Batch size 64
Number of epochs 10

of filters/layers which resulted in a small (Ì 5%) improvement in
validation accuracy. All the model’s hyperparameters are summarized
in Table 6. They were found by a manual trial and error over a small
set of alternatives. In fact, since training takes Ì 22 h on a single V100
GPU, it was not feasible to perform a more comprehensive automated
search.

As a final detail, we note that using a relative loss, such as the Mean
Absolute Percentage Error (MAPE), works best for the task of energy re-
construction, improving resolution and bias at low energies. However,
it also makes training more unstable: sometimes a bad initialization
results in an initial loss of 100%, which does not improve over time. In
these cases, weights need to be re-initialized, and the training restarted.

4. Results

In the following sections we will present the performance of the
studied methods (BDT, DNN, ResNet-J, VGG-J and GNN-J) for the
reconstruction of primary vertex and energy. Only one of the models,
GNN-J is used exclusively for the energy reconstruction. The task of the
vertex reconstruction requires the time information of each PMT taken
into account. Since the current implementation of GNN-J aggregates
data to a some degree even at the input level, it is not suitable for the
task. Ways to overcome this limitation will be discussed in Section 5.

Before comparing the results, we also present an overview of per-
formance parameters and outline their expected behavior.

4.1. Definition of the performance parameters

In order to evaluate the performance of the trained models, both the
neural networks and the decision trees, we study two characteristics:
resolution and bias. They are defined by a Gaussian fit, as shown in
Fig. 11. The mean value of the best fit Gaussian corresponds to the

9

Wuming Luo

reconstruction - GeV
Muons:

classification, track reco
Atmospheric neutrinos:

PID, direction/energy reco…

6

Wuming Luo

physics analyses

Signal/bkg separation
Correlated signals selection

IBD prompt&delayed signals
muons & induced isotopes

Parameter fitting
More…

7

Wuming Luo

more…

ML based fast&accurate simulation
Hardware: ML waveform reco on FPGA
Online: Event Classification (no triggers for JUNO)

different energy range, multiple categories for the same
type of events (muons, atm. neutrinos…)
need to save different info (WaveForm, partial WF, T/Q)

Detector monitoring
anomaly detection
rare signal detection (such as SuperNova)

more…

8

Wuming Luo

common issues

Image vs video: how to use the temporal info
Sparse data: lots of un-fired PMTs
Spherical detector
MC and data discrepancy
ML related systematics uncertainties
Information segmentation: multi-target reco
Resource bottleneck for running Large Models such
as Transformer(not enough GPU memory)
And more…

9

PID

Wuming Luo

particle identification

Goal: Pulse Shape Discrimination (𝛾/e/e+, vs proton/
neutron)
Principle: different scintillation timing profile
Method: BDT or NN

11

Method !

(BDT)
!!

""
"#
#

$$%&'

%&
%(

!)*%'
!+%,-

Method !(NN)

Multi-layer Perceptron Classifier

Wuming Luo

challenges and opportunities

Neither track information, nor Cherenkov rings for JUNO
Advantages of JUNO: 1. large PMT coverage(78%), large volume; 2.
excellent neutron tagging; 3. hadronic component visible in LS; 4. can
measure distinctive isotopes

12

LArTPC Water
Cherenkov

Wuming Luo

particle topology

13

e µ

n𝜋0

Energy deposition topology in LS for different type of particles

Wuming Luo

reco/pid methodology
Step 1: feature extraction from PMT waveforms
Step 2: model building
Step 3: optimization and validation

14

Wuming Luo

plane model: EfficientNetV2-S

15

Wuming Luo

spherical model: Deepsphere

16

Wuming Luo

3D model: pointNet++

17

Wuming Luo

directionality

18

Directly reconstruct the direction of 𝜈 instead of the charged lepton

mitigate the intrinsic large uncertainty between the two
hadronic component in LS also helps, advantageous w.r.t. Water Cerenkov

Energy dependent Zenith Angle resolution, less than 10˚ for E>3GeV

Phys.Rev.D 109 (2024) 5, 052005

Yellow Book
𝜎𝜃𝜇 =1˚
𝜎𝜃𝜈 =10˚

J. Phys. G: 43 (2016) 030401

Wuming Luo

pid strategy

 Both leptons&hadrons visible, different topology
 step1: CC-e/CC-mu/NC classification
 step2: vs ν̄ ν

19

Wuming Luo

pid ml input & model

PMT features —> PointNet++ (x, y, z, feature_i…)
Neutron candidates —> DGCNN (x, y, z)

20

Wuming Luo

pid preliminary performance

21

CC-e VS CC- VS NCμ

CC-e VS other

Wing Yin Ma@Neutrino2024

work in progresswork in progress

https://agenda.infn.it/event/37867/contributions/227965/

PMT

Wuming Luo

pmt waveform reco i

Classification: photon counting
Model:

resembles speech recognition
RawNet: one of the most influential DNN model designed for
speech recognition
takes 1D waveform as input

23

MeV Region

Waveform (PMT#172)
nPE=1

Waveform(PMT#8229)
nPE=4

Wuming Luo

pmt waveform reco ii
Regression:

easy: total charge or first hit time 😀

difficult: charge and time for the first 5 or 10 pulses 😵💫

super difficult: charge and time for each pulse 😱

Method: 1D waveform + CNN

24

Wuming Luo

pmt waveform photon counting

Input: pre-processed PMT waveform within
420ns signal window
Model: Customized RawNet
Output: {pk} the probability for predicting
(k=0,1, … ≥9) PEs

25

W. Luo@Neutrino2024

https://agenda.infn.it/event/37867/contributions/228502/

Wuming Luo

photon counting performance

Left: Confusion matrix of RawNet
99% (95%, 87%) accuracy for 1PE (2PEs, 3PEs)
Accuracy decreases rapidly as nPEs increases

Right: Confusion matrix based on charge classification
The accuracy is markedly inferior to that of RawNet

26

W. Luo@Neutrino2024

https://agenda.infn.it/event/37867/contributions/228502/

reco

Wuming Luo

vertex reco

Goal: vertex reco for e+ in [0–10] MeV region
Principle: PMTs charge&time (both highly vertex
dependent)—> vertex
ML based Methods:

inputs: each PMT as a pixel —> images
models: Plane or Spherical CNN

28

Wuming Luo

1. plane models

29

2D projection of PMTs

Remarks: inputs optimization
1. separate different types of PMTs
2. add info of later hits

Pros and Cons

Image examples

Wuming Luo

models: VGG-J

30

Z. Qian, V. Belavin, V. Bokov et al. Nuclear Inst. and Methods in Physics Research, A 1010 (2021) 165527

Fig. 5. The planar projection method first generates a mapping of the ID of the PMTs and the position of the pixel in the image (a). The charge (b) and first hit time (c)
information can be filled in the image according to the mapping.

Fig. 6. VGG-J network architecture for CNN reconstruction with 17 weight layers: 13 convolutional and 4 dense layers. It is composed of two main blocks: a sequence of 3 ù 3
convolutional layers (with max pooling used for coarsening) and a few dense layers at the end. The last dense layer is used to output the prediction result, which is 1 node for
reconstructing energy and 3 nodes for reconstructing vertex coordinates.

yield the prediction of energy or vertex. Compared with the VGG [40]
network that has two layers with 4096 nodes, the amount of parameters
in VGG-J network is 26 million, which has been reduced by 65%, while
the reconstruction accuracy has remained at the same level.

3.3.3. ResNet-J
In order to maximize the reconstruction performance, we would

like to train a network that has more layers, which may bring better
learning ability. However, a deeper network is not similarly easy to
optimize. This is caused by the problem of vanishing/exploding gra-
dients [43,44]. Not thoroughly optimized network may have only a
lower accuracy. In order to solve this problem, we use ResNet network
architecture [42]. The main feature of ResNet is the usage of residual
blocks, shown in Fig. 7, where x denotes the input of the block. In a
regular NN the block yields the feature mapping H(x), while the ResNet
lets the block fit another feature mapping F (x) := H(x) * x which is
called residual mapping. Therefore, the original mapping is converted
into F (x) + x. It has been discussed that it is easier to optimize the
residual mapping than to optimize the original one due to the effect of
identity skip connections [45].

Compared with the original ResNet network architecture [42], we
optimized convolutional layers and the dense layers for the reconstruc-
tion in JUNO. The final network structure is shown in Fig. 8 and
contains a total of 53 layers with approximately 35 million trainable

Fig. 7. Residual block structure in ResNet network. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

Table 4
Comparison of VGG-J and ResNet-J architectures.

VGG-J ResNet-J

Weight layers 17 53
Number of weights 26 310 035 38 352 403

parameters. In comparison with VGG-J it has more layers to enhance

the learning ability, see Table 4.

7

Wuming Luo

models: ResNet-J

31

Z. Qian, V. Belavin, V. Bokov et al. Nuclear Inst. and Methods in Physics Research, A 1010 (2021) 165527

Fig. 8. ResNet-J network architecture for CNN reconstruction with 53 weight layers: 49 convolutional and 4 dense layers. It is composed of a number of residual blocks (see a
typical example below) and a couple of dense layers at the end. A residual block is make up of a stack of convolutions. They are 1 ù 1, 3 ù 3, and 1 ù 1 convolutions, where the
1 ù 1 layers are responsible for reducing and then increasing (restoring) dimensions and the 3 ù 3 layers are responsible for coarsening when it has a stride of 2 in conv block
(red). Next to the main convolutions (Full path), there is a 3 ù 3 convolutional layer (Skip path), which has same dimensions and stride so that it can be added to the outputs
of stacked layers used for the residual function. Between the convolutions and dense layers, an average pooling layer summarizes all feature got by convolutions, then the dense
layers at the end will output the prediction result.

Table 5
Hyperparameters for VGG-J and ResNet-J.
Parameter Value

Loss Mean Squared Error
Optimizer Adam (�

1
= 0.9, �

2
= 0.999)

Learning rate
<

Linearly increasing from 0 to 10
*3 during the first epoch,

then exponential decay to 10
*8.

Batch size 64
Number of epochs 15

We used same hyperparameters and training schedule for ResNet-J
and VGG-J, see Table 5. It takes about 4 days to train one model on a
single V100 GPU.

3.4. Spherical model (GNN-J)

As it was already mentioned in Section 3.3, the spherical arrange-
ment of PMTs in JUNO does not allow to directly use the signal as input
for CNNs. One possible workaround is to define an arbitrary projection
to a Euclidean domain, and then use CNNs as usual, as it was done in
the previous Section 3.3.1.

However, this comes with a few problems:

• Deformation. Any projection inevitably stretches or shrinks cer-
tain areas. So, during convolution, the same filter will capture
features coming from spherical regions with different areas and
shape, breaking translational invariance and making learning
more difficult.

• Topology. Distances on the projection are not, in general, pro-
portional to distances on the spherical surface. So, features that
are close on the sphere can be far in the 2D projection, meaning
that they may not be captured by a local filter.

These issues can be avoided by using Graph Neural Networks
(GNNs) [46], which generalize CNNs to generic manifolds and remove
the need for a projection.

The main idea is to encode the topology of the input domain in
a graph structure, and then properly define convolutions and pooling
operations on it. In this work, we adapt the DeepSphere model [47],
previously used in cosmology, to the JUNO experiment. The procedure
is as follows:

(1) First, we need to define the graph’s nodes which will hold the
input samples. A natural choice would be to directly use the PMTs as
vertices in 3D space. However, we need also a way to iteratively group
neighboring nodes so that their data can be aggregated by the pooling
operation. The simplest possibility is to consider a hierarchical partition
of the spherical surface, and define nodes in the graph as the regions’
centers. In this work, we use the Hierarchical Equal Area isoLatitude
Pixelisation (HEALPix) algorithm [48], which divides the surface into
N

pix
= 12N

2

side
spherical pixels, all with the same area and centered

along rings of equal latitude (see Fig. 9, top). The parameter N
side

í 2
k

controls the discretization resolution. For the input data, it is set at
N

side
= 16, dividing the detector’s surface in N

pix
= 3072 regions, each

containing on average 5.77 PMTs. Higher values of N
side

have been
tried (up to N

side
= 64, at which each pixel contains at most 1 PMT),

but they significantly increase storage and computational requirements,
while not improving the reconstruction accuracy.

A hierarchical discretization means that vertices can be labeled in
a nested scheme (see Fig. 9, bottom), which makes pooling operations
very efficient.

(2) We construct a simple, undirected graph G = (V , E ,W) encoding
the discretization structure. In this notation, V = {vi}i=1,…,Npix

is the set
of N

pix
vertices, with vi À R3 being the center in 3D space of the ith

spherical pixel. Then, E œ V ù V is the set of active links between ver-
tices, and W À RNpixùNpix is the positive symmetric weighted adjacency
matrix, such that Wij is the weight of the connection from node i to j,
representing their ‘‘closeness’’, with Wij > 0 if and only if (vi, vj) À E .

Thus, the connection weights encode all the information about the
topology of the network. The minimum number of links between two
nodes, i.e. their graph distance, determines which pixels can appear
simultaneously in a convolutional filter. So, to capture only local
features in the filters, each node should be connected only to its nearest
neighbors on the sphere.

In particular, the value a node i has after filtering will depend only
on its previous value, and that of all nodes that are less than K hops
away. However, in this procedure, further node values are propagated
towards i on the graph. Each traversed link incurs in a decay factor
inversely proportional to that link’s weight. Thus, the higherW

ij
is, the

higher will be j’s impact on the filtered value of i.
In summary, any choice of Wij must be such that Wij ë 0 only if i

and j are closer than some threshold, with Wij inversely proportional
to the distance between i and j.

8

Wuming Luo

2. spherical models
HEALPix —> spherical CNN

Borrowed from Astro. Phys.
Pixelization of a sphere

Many other spherical models…

32

Z. Qian, V. Belavin, V. Bokov et al. Nuclear Inst. and Methods in Physics Research, A 1010 (2021) 165527

Fig. 9. The HEALPix algorithm starts by dividing the spherical surface into 12 regions: 4 around each pole, and 4 at the equator. Then, resolution can be increased by iteratively
dividing each spherical pixel into 4 sub-pixels of equal area, so that any edge of the original 12 regions is split into N

side
parts. Pixels are labeled in a nested scheme, so that subpixels

belonging to the same region have consecutive indices. In this way, a pooling operation on the discretized sphere is as efficient as the usual 1D pooling. As an example, consider
the bottom picture. Pixels belonging to the same region have similar colors, with their brightness representing different values. The pooling operation consists of aggregating all
pixels in the same region into a single value, which in this example is given by the darkest color.

For simplicity, we adopted the same convention used by the Deep-
Sphere model [47], for which Wij > 0 only if i and j are neighboring
pixels in the HEALPix discretization. The actual values for Wij are then
given by a Gaussian function:

Wij = exp

H

*

Òvi * vjÒ22
2d2

I

, d2 =
1

E

…

(vi ,vj)ÀE
Òvi * vjÒ22, (6)

where ÒxÒ
2
í

t

x
2

1
+5 + x2

n
denotes the Euclidean norm, and E is the

number of elements in the set E , i.e. the number of links in G. Note that,
since we are only connecting neighboring nodes, their distance on the
spherical surface can be locally approximated by the Euclidean norm.
Then, the average d2 of the squared distances is used to normalize the
argument of the exponential.

With this choice, the nodes are only locally connected, meaning that
W is sparse, i.e. contains mostly zeros, and so computations may be
optimized. To construct a GNN, the only strict requirement for the Wij

is to encode a connected graph, i.e. such that there is a set of edges
with non-zero Wij linking any two nodes i and j. However, we did not
investigate different choices for (6).

(3) An input sample x À RNpixùF is a signal on G, i.e. a function
mapping each node to a vector of F features.

In this work F = 2, and we consider, for each PMT, its charge
(i.e. the number of PE hits) and its first hit time, relative to the
event’s origin. If a PMT receives no hits, we assign a first hit time of
1024 ns, denoting that it is hit ‘‘at infinity’’. This value is chosen to be
significantly higher than any of the recorded first hit times in the whole
dataset, and any sufficiently large value would perform the same.

Since spherical pixels contain more than one PMT, we need to
aggregate data from several PMTs to form the feature vector xi À RF of
the ith spherical pixel. So, for every spherical pixel, we sum the charges
of all the PMTs inside it, and take the minimum of their first hit times.

(4) Before the training, we normalize each channel (charge and first
hit) in the training dataset to 0 mean and unit standard deviation. In
this way, all the features have the same order of magnitude, which is
necessary for the model to converge.

(5) Convolutions on G can be defined in many ways. In this work
we use Chebyshev Convolutional Layers [49], which use the spectral
domain of the graph to define filters.

(6) The model is implemented using the Spektral library [50] and
Tensorflow 2.2 [51] with tf.Keras.

The architecture, further referred to as GNN-J (see Fig. 10), is
inspired by that of VGG, with some minor changes in the number

Table 6
Hyperparameters for GNN-J.
Parameter Value

Loss Mean Absolute Percentage Error
Optimizer Adam (�

1
= 0.8, �

2
= 0.9)

Learning rate
<

Fixed at 0.001 for N
epoch

< 3,
then exponential decay at rate *0.1.

Batch size 64
Number of epochs 10

of filters/layers which resulted in a small (Ì 5%) improvement in
validation accuracy. All the model’s hyperparameters are summarized
in Table 6. They were found by a manual trial and error over a small
set of alternatives. In fact, since training takes Ì 22 h on a single V100
GPU, it was not feasible to perform a more comprehensive automated
search.

As a final detail, we note that using a relative loss, such as the Mean
Absolute Percentage Error (MAPE), works best for the task of energy re-
construction, improving resolution and bias at low energies. However,
it also makes training more unstable: sometimes a bad initialization
results in an initial loss of 100%, which does not improve over time. In
these cases, weights need to be re-initialized, and the training restarted.

4. Results

In the following sections we will present the performance of the
studied methods (BDT, DNN, ResNet-J, VGG-J and GNN-J) for the
reconstruction of primary vertex and energy. Only one of the models,
GNN-J is used exclusively for the energy reconstruction. The task of the
vertex reconstruction requires the time information of each PMT taken
into account. Since the current implementation of GNN-J aggregates
data to a some degree even at the input level, it is not suitable for the
task. Ways to overcome this limitation will be discussed in Section 5.

Before comparing the results, we also present an overview of per-
formance parameters and outline their expected behavior.

4.1. Definition of the performance parameters

In order to evaluate the performance of the trained models, both the
neural networks and the decision trees, we study two characteristics:
resolution and bias. They are defined by a Gaussian fit, as shown in
Fig. 11. The mean value of the best fit Gaussian corresponds to the

9

Wuming Luo

models: GNN-J

33

Z. Qian, V. Belavin, V. Bokov et al. Nuclear Inst. and Methods in Physics Research, A 1010 (2021) 165527

Fig. 10. Architecture for the GNN-J model. It is composed of two main blocks: a sequence of Chebyshev convolutional layers (with maxpooling used for coarsening) and a
couple of dense layers at the end. Between the two, a global average pooling layer computes averages for each filter, leading to a certain degree of rotational invariance. Graph
convolutions happen at the spectral domain, and involve filters that are localized, i.e. with a finite (graph) radius K = 5. Their topology is parametrized by the coefficients of a
K-order Chebyshev polynomial, which are part of the model’s learnable parameters.

Fig. 11. An example of Gaussian fit for a spatial variable in each direction for Evis = 4.022 MeV, used to extract the bias and the resolution. The predictions are produced with
ResNet-J.

reconstruction bias and represents the systematic shift introduced by
the reconstruction, which potentially may be compensated. The value
of the � of the Gaussian corresponds to the reconstruction resolution.
This approach is used for both the vertex and the energy reconstruction.
The uncertainties of the fit values are shown on the plots with vertex
and energy resolution by error bars.

Bias and resolution are studied as a function of two variables. The
first one is visible energy. It is a combination Evis = Ee + me = E

kin
+

1.022 MeV of the total positron energy and the electron mass, which
appears due to positron–electron annihilation. The light collection and
the number of triggered PMTs grow with the energy, which makes the
reconstruction more precise.

The detector is symmetric versus rotation; therefore, the main dif-
ference in reconstruction arises from a distance between the detector
center and the vertex — its radial position, which is used as a second
variable. Events in the center of the detector produce a more symmetric
response. The events on the edges of the detector are affected by the
light attenuation in the LS, effects of the light scattering and re-emission
and, near the edge, by the total internal reflection in the acrylic sphere.
The results are sampled versus r3, since cubic sampling produces equal
volume spherical layers and provides equal statistics samples.

The performance of the vertex reconstruction is studied as a func-
tion of both visible energy and radial position. It is reported in absolute
values in mm.

It is worth noting that while the angular resolution is high, the bias
and resolution of the radial component do not directly correspond to
the Cartesian distance between the true and reconstructed vertex.

The performance of the energy reconstruction is studied as a func-
tion of visible energy and is reported as a ratio to the visible energy in
percents. It could in principle be interesting to study energy resolution
as a function of number of photo-electrons, because to the first order
the resolution is defined as 1_

˘

n
p.e.. However, for the large JUNO

detector n
p.e. depends on the event position in the detector. By this

reason we do not present the results as function of n
p.e..

It has to be noted here that the ML models learn that the event
energy belongs to the range of the training dataset (0*10 MeV) and
never happens outside, therefore the distribution of the reconstructed
energy at the edges of the dataset becomes asymmetric, as shown in
Fig. 12. In order to simplify the following considerations, we do not
analyze the points on the edges of the dataset. Instead, we only consider
points from 0.1 MeV to 9.0 MeV, for which the prediction distributions
are well fit by Gaussian. Since the edge values are outside the region
of interest of physics, which has a range of 0.5*9.0 MeV, no important
information is lost by the truncation.

4.2. Vertex reconstruction

The current ResNet-J result shows that the absolute value of bias is
less than 15 mm in the whole detector when taking TTS and DN into
account, see Figs. 13 (left) and it is not energy-dependent, see Fig. 13
(right).

From Fig. 13 (left), it is clear that the resolution is much better
in the border region of the detector (r3 > 4000 m

3), than the inner

10

