ML AT JUNO

W U M I N G L U O 2 O 2 4 / O 1 / 1 x

JUNO

- Jiangmen Underground Neutrino Observatory (JUNO):
 - Determine the neutrino mass ordering
 - Measure neutrino oscillation parameters to sub-percent level
 - ** SuperNova, Solar, Atm. Geo. etc

	DETECTOR ARGET MASS	ENERGY RESOLUTION
KamLAND	1000 t	6%/√E
D. Chooz	8+22 t	
RENO	16 t	8%/√E
Daya Bay	20 t	
Borexino	300 t	5%/√E
JUNO	20000 t	3%/√E

DETECTOR

Wuming Luo 3

RECONSTRUCTION - PMT

- ** PMT waveform reco (common issue for many exp.)
 - ** photon counting (classification)
 - # time/charge reco (regression)
 - baseline: first_hit_time and total_charge
 - ideal: T/Q for every photon hit?

RECONSTRUCTION - MEV

- # High precision Vertex/Energy reco in MeV region
 - ** world leading energy resolution: 3%@1MeV
 - model/inputs/outputs optimization
 - # universal challenges:
 - ** PMT dark noise de-noising, information segmentation...

RECONSTRUCTION - GEV

PHYSICS ANALYSES

- ** Signal/bkg separation
- Correlated signals selection
 - # IBD prompt&delayed signals
 - muons & induced isotopes
- ** Parameter fitting
- ₩ More...

MORE...

- **ML** based fast&accurate simulation
- # Hardware: ML waveform reco on FPGA
- Monline: Event Classification (no triggers for JUNO)
 - ** different energy range, multiple categories for the same type of events (muons, atm. neutrinos...)
 - meed to save different info (WaveForm, partial WF, T/Q)
- ** Detector monitoring
 - maly detection
 - ** rare signal detection (such as SuperNova)
- ※ more...

COMMON ISSUES

- Image vs video: how to use the temporal info
- Sparse data: lots of un-fired PMTs
- ** Spherical detector
- MC and data discrepancy
- ML related systematics uncertainties
- MInformation segmentation: multi-target reco
- Resource bottleneck for running Large Models such as Transformer(not enough GPU memory)
- **And more...

PID

PARTICLE IDENTIFICATION

** Goal: Pulse Shape Discrimination (γ/e/e+, vs proton/neutron)

** Principle: different scintillation timing profile

Method: BDT or NN

Multi-layer Perceptron Classifier

CHALLENGES AND OPPORTUNITIES

- * Neither track information, nor Cherenkov rings for JUNO
- *Advantages of JUNO: 1. large PMT coverage(78%), large volume; 2. excellent neutron tagging; 3. hadronic component visible in LS; 4. can measure distinctive isotopes

PARTICLE TOPOLOGY

Energy deposition topology in LS for different type of particles

RECO/PID METHODOLOGY

- *Step 1: feature extraction from PMT waveforms
- *Step 2: model building
- *Step 3: optimization and validation

PLANE MODEL: EFFICIENTNETV2-S

SPHERICAL MODEL: DEEPSPHERE

3D MODEL: POINTNETHH

DIRECTIONALITY

Phys.Rev.D 109 (2024) 5, 052005

- \bullet Directly reconstruct the direction of ν instead of the charged lepton
 - *mitigate the intrinsic large uncertainty between the two
 - *hadronic component in LS also helps, advantageous w.r.t. Water Cerenkov
- *Energy dependent Zenith Angle resolution, less than 10° for E>3GeV

J. Phys. G: 43 (2016) 030401

Yellow Book

$$\sigma_{\theta\mu} = 1^{\circ}$$

$$\sigma_{\theta\nu} = 10^{\circ}$$

PID STRATEGY

Figure 4. The schematic workflow of atmospheric neutrino classification.

- * Both leptons&hadrons visible, different topology
- * step1: CC-e/CC-mu/NC classification
- \Rightarrow step2: $\bar{\nu}$ vs ν

PID ML INPUT & MODEL

- *PMT features —> PointNet++ (x, y, z, feature_i...)
- *Neutron candidates -> DGCNN (x, y, z)

PID PRELIMINARY PERFORMANCE

Fig. 8: Illustration of the AUC score using $\nu_e/\overline{\nu}_e$ classification as an example. The AUC score can be viewed as an optimisation of $\nu_e/\overline{\nu}_e$ efficiencies.

PMT

PMT WAVEFORM RECO I

- Classification: photon counting
- - ** resembles speech recognition
 - RawNet: one of the most influential DNN model designed for speech recognition
 - * takes 1D waveform as input

PMT WAVEFORM RECO II

**Regression:

- ** easy: total charge or first hit time **
- # difficult: charge and time for the first 5 or 10 pulses
- ** super difficult: charge and time for each pulse 🚱

Method: 1D waveform + CNN

PMT WAVEFORM PHOTON COUNTING

W. Luo@Neutrino2024

- *Input: pre-processed PMT waveform within 420ns signal window
- *Model: Customized RawNet
- *Output: {pk} the probability for predicting $(k=0,1, ... \ge 9)$ PEs

Table 2: Modified RawNet architecture. For convolutional layers, numbers inside parentheses refer to filter length, stride size, and number of filters. For gated recurrent unit (GRU) and fully-connected layers, numbers inside the parentheses indicate the number of nodes.

Conv(2 2 120)	
Strided Conv(3,3,128) BN (128 LeakyReLU	, 140)
$ \begin{cases} Conv(3,1,128) \\ BN \\ LeakyReLU \\ Conv(3,1,128) \\ BN \\ \\ LeakyReLU \\ MaxPool(3) \end{cases} \times 2 $ (128)	3, 46)
$\begin{cases} Conv(3,1,256) \\ BN \\ LeakyReLU \\ Conv(3,1,256) \\ BN \\ -\frac{BN}{LeakyReLU} \\ LeakyReLU \\ MaxPool(3) \end{cases} \times 2 \qquad (25)$	6, 1)
GRU GRU(1024) (10)24,)
Speaker embedding FC(128) (128)	28,)
Output FC(10) (1	.0,)

PHOTON COUNTING PERFORMANCE

- *Left: Confusion matrix of RawNet
 - *99% (95%, 87%) accuracy for 1PE (2PEs, 3PEs)
 - *Accuracy decreases rapidly as nPEs increases
- *Right: Confusion matrix based on charge classification
 - *The accuracy is markedly inferior to that of RawNet

W. Luo@Neutrino2024

RECO

VERTEX RECO

- Goal: vertex reco for e⁺ in [0−10] MeV region
- Principle: PMTs charge&time (both highly vertex
 dependent) —> vertex
- **** ML** based Methods:
 - inputs: each PMT as a pixel —> images
 - models: Plane or Spherical CNN

1. PLANE MODELS

Remarks: inputs optimization

- 1. separate different types of PMTs
- 2. add info of later hits

Pros and Cons

MODELS: VGG-J

MODELS: RESNET-J

2. SPHERICAL MODELS

- # HEALPix -> spherical CNN
 - Borrowed from Astro. Phys.
 - Pixelization of a sphere
- Many other spherical models...

MODELS: GNN-J

