# Residual distribution of opt at different Pt with fast simulation

9.06 耿青林

# Global layout of tracking system

| VXD   |            | ІТКЕ & ОТКЕ |           |             |             | ІТКВ & ОТКВ |           |            | ТРС  |             |            | 20      | 2000 -            |       |       |               | 1             | -                | I       |       |
|-------|------------|-------------|-----------|-------------|-------------|-------------|-----------|------------|------|-------------|------------|---------|-------------------|-------|-------|---------------|---------------|------------------|---------|-------|
| layer | Half-<br>Z | R           | layer     | Inner-<br>R | Outer<br>-R | Z           | laye<br>r | Half-<br>Z | R    | Inne<br>r-R | Half-<br>Z | Outer-R | 15                | 500   |       |               |               |                  |         |       |
| L11   | 130        | 12.4<br>59  | ITKE<br>1 | 75          | 240         | 50<br>0.5   | ITK<br>B1 | 500.<br>5  | 240  | 600         | 2900       | 1800    |                   |       |       |               |               |                  |         |       |
| L12   | 130        |             | ITKE<br>2 | 101.9       | 350         | 71<br>5     | ITK<br>B2 | 715        | 350  |             |            |         |                   | 000   |       |               |               |                  |         |       |
| L21   | 247        | 27.8<br>92  | ITKE<br>3 | 142.6       | 600         | 10<br>01    | ITK<br>B3 | 1001       | 600  |             |            |         | γ- α <del>,</del> | 500 - |       |               |               | KERC2            | ,<br>   | KED04 |
| L22   | 247        |             | ITKE<br>4 | 214         | 600         | 15<br>00    | ОТ<br>КВ  | 2900       | 1800 |             |            |         | ,                 | REDOR | MIDO) |               | KEDER         | уре<br>          |         |       |
| L31   | 374.<br>5  | 43.7<br>92  | ОТК<br>Е  | 405.7       | 1810        | 29<br>03    |           |            |      |             |            |         |                   | 0     |       | XIXL: VIX34 X | <b>YI8</b> 56 |                  |         |       |
| L32   | 374.<br>5  |             |           |             |             |             |           |            |      |             |            |         | -5                | 500 — | -500  | 0             | 500           | <br>1000<br>z-ax | is [mm] | 1500  |

 $\theta_2$ =31.94deg

2000

2500

模拟中入射的角度选为10°,即只穿过VTX和端盖部分。把ITKE和OTKE的hit效率分别设为1.00,0.95,0.90三个不同的值,观察在不同动量下,动量分辨的残差分布。

### residual distribution of $\sigma$ Pt



## events ratio within $3\sigma$

 $events_{(between \pm 3\sigma)} / events_{(total)}$ 

| Pt<br>eff | 2     | 5     | 10    | 20    | 50    | 100   | 100<br>99<br>99<br>     |
|-----------|-------|-------|-------|-------|-------|-------|-------------------------|
| 100%      | 99.8% | 99.8% | 99.8% | 99.7% | 99.7% | 99.8% | 98<br>97<br>97          |
| 95%       | 99.2% | 99.04 | 98.8% | 98.2% | 97.7% | 97.6% | 96                      |
| 90%       | 98.4% | 98.04 | 97.6% | 96.5% | 95.3% | 94.8% | 95<br>0 20 40 60 80 100 |

pt分辨的残差分布未观察到明显拖尾现象, 3σ 范围内事例数占比随效率和动量增加而降低。

# z of ITKE4: 1500mm→1800mm



### events ratio within $3\sigma$ for 4 endcaps

z of ITKE4: 1500mm→1800mm



#### z of ITKE3、ITKE4: 1001mm、1500mm→1301mm、1800mm



#### events ratio within $3\sigma$ for 4 endcaps

z of ITKE3、ITKE4: 1001mm、1500mm→1301mm、1800mm

 $events_{(between \pm 3\sigma)} / events_{(total)}$ Pt 99.5 2 5 20 10 50 100 eff=1.00 eff **99** eff=0.95 eff=0.90 98.5 99.78% 99.78% 99.75% 99.74% 99.66% 99.71% 80 (%) 80 (%) 80 (%) 100% 99.29% 95% 99.47% 99.41% 98.79% 98.15% 97.90% 97 96.5 99.07% 98.87% 98.57% 97.76% 96.29% 95.74% 90% 96 100 Pt[GeV/c] 20 40 60 80 0

#### residual distribution of σPt for 3 endcaps(no ITKE2)



# events ratio within $3\sigma$ for 3 endcaps

 $events_{(between \pm 3\sigma)} / events_{(total)}$ 



backup

