Machine learning detection of Higgs and top quark jets in collider events

Jinmian Li

29th Mini-workshop on the frontier of LHC

Fuzhou · 2024.12.14

Base on Phys.Rev.D 108 (2023) 11, 116002

with Sang Kwan Choi, Cong Zhang, Rao Zhang

Outline

- Jet at detector
 - Jet formation: parton shower and hadronization
 - Jet tagging Machine Learning
- 2 Jet detection with machine learning
 - Event image: Mask RCNN
 - Data preprocessing
 - Performance of the Mask R-CNN for Higgs and top detection

Jet in a detector

Jet is collimated spray of energetic detectable particles, that supposed to have the same origin.

At the LHC, most jets are originated from energetic quark and gluon.

Jet formation: parton shower and hadronization

For a collinear emission:

$$\sigma_{n+1} \sim \sigma_n \int \frac{dp_a^2}{p_a^2} \int dz \frac{\alpha_s}{2\pi} \hat{P}(z) \equiv \sigma_n \int dt W(t)$$

For multiple emissions

$$\sigma_{n+m} \sim \sigma_n \cdot \int dt_1 \cdots \int dt_m W(t_1) \cdots W(t_m)$$

$$\equiv \sigma_n \cdot \frac{1}{m!} (\int dt W(t))^m$$

The probability for the next emission at t:

$$d \text{Prob}(t) = dt W(t) \exp(-\int_{t_0}^t dt W(t))$$

 $\exp(-\int dt W(t))$ is Sudakov form factor = No emission probability

The Lund String Model:

- String breaking probability $d\mathcal{P} \propto N \exp(bA) dA$ N, b are free parameters A is the space-time area
- Different quark $\mathcal{P} \propto \exp(-\frac{\pi p_{\perp q}^2}{\kappa}) \exp(-\frac{\pi m_q^2}{\kappa})$

Jet tagging procudure

Jet sequential recombination algorithm

Different jet clustering algorithms use different definition of distance measure.

Figures from Gavin P. Salam Eur. Phys. J. C67:637-686, 2010

Jet image representation

Each calorimeter cell as a pixel and the energy deposition as the intensity A jet can be viewed as a digital image

Proceeded by 2-dimensional convolutional neural networks

Graph and sequence representation

Sequences/trees formed through sequential parton showering and hadronization \rightarrow recurrent neural networks, transformer network, recursive neural networks Graphs/point clouds with the information encoded in the adjacency nodes and edges \rightarrow graph neural networks

The state-of-art performance of NN

- The ParticleNet, Particle Transformer, LorentzNet and PELICAN are among the state-of-the-art methods, AUC values of over 0.98 for top tagging, without pileup effects.
- The momentum reconstruction component of PELICAN network can predict the p_T and mass of W boson with standard deviations of a few percent.

	Method	σ_{p_T} (%)	σ_m (%)	σ_{ψ} (centirad)
Without DELPHES	JH PELICAN PELICAN JH PELICAN FC	0.70% 0.83% 0.28% 0.32%	1.29% 1.21% 0.60% 0.76%	0.162 0.388 0.089 0.111
With DELPHES	JH PELICAN PELICAN JH PELICAN FC	10.8 % 5.6 % 3.8 % 4.4 %	8.3 % 3.2 % 2.9 % 3.1 %	8.9 4.2 2.7 3.0

Possible drawbacks

- Performance depends on jet clustering algorithms and their parameters.
- For new physics search, we do not know the jet mass, may be difficult to choose an appropriate jet size.
- Image presentation breaks Lorentz symmetry, the jet mass information is lost.
- May sensitive to pileup events.

Object detection and Semantic Segmentation

Semantic Segmentation is a computer vision task in which the goal is to categorize each pixel in an image into a class or object.

Mask R-CNN (Mask Region-based Convolutional Neural Network) [K. He, et.al, arXiv:1703.06870] is a state-of-the-art deep learning model used for object detection and instance segmentation in computer vision. It builds upon the Faster R-CNN architecture by adding a branch for predicting object masks in addition to bounding boxes.

Data Preparation

- Training samples: one million events of the $Ht\bar{t}$ process, $p_T(H) > 200$ GeV, $p_T(t) > 300$ GeV
- Test samples including $Ht\bar{t}$, $t\bar{t}t\bar{t}$, $HHt\bar{t}$ in SM, and $\tilde{\chi}_{2}^{0}\tilde{\chi}_{2}^{0}$ with $\tilde{\chi}_{2}^{0} \to H\tilde{\chi}_{1}^{0}$, $\tilde{t}\bar{\tilde{t}}$ with $\tilde{t} \to t\tilde{\chi}_{1}^{0}$ in SUSY model.
- Average number of 50 pileup events are superposed on each one of the hard events.
- Granulate the event image: the transpose momenta as grayscale on the $\eta \phi$ plane, with pixel size $\Delta \eta \times \Delta \phi = 0.02 \times 0.02$.
- Could take photon layer, charged lepton layer, neutral and charged hadron layers. Not much improvement!

Data preparation

- **Periodicity**: To incorporate the periodicity, the ϕ range is chosen to be from 0 to 2.85π . The spatial size of input images is then 448×448 pixels.
- IR safety: Boost along the beam direction to the frame where p_z of the parton is zero, and discard the constituents with energy lower than 0.1 GeV or with angular separation to the parton greater than $\pi/2$. Then, among the remaining constituents, select those having at least 3 others in 20×20 pixels neighbourhood or with p_T greater than 5 GeV.

The top jet constituents

- Due to color confinement, some of the top quark final states could have multiple ancestors other than the top quark
- In MC simulation, final states have multiple ancestors are ranked according to their angular distances assigned to the top/anti-top categories in order until the reconstructed top/anti-top jet invariant mass exceeds $1.05m_t$

Mask of a Higgs and top jets: two definitions

- Convex hull covering all selected constituents
- Enlargement expanding each selected pixel into the area of 9×9 pixels with the selected one at the center

Modified Mask RCNN

Higgs and top tagging

Performance of the Mask R-CNN

- Retrain these networks on Higgs and top quark jets from our $Ht\bar{t}$ event sample (with pileup events)
- Top quark jet is taken as the signal and Higgs jet is the background
- Performance of LorentzNet degrades when the cone size becomes too small

			Mask R-CNN					
	R = 0.8	R = 1.0	R = 1.2	R = 1.4	R = 1.6	R = 1.8	signal Higgs	signal top
AUC	0.920	0.953	0.960	0.964	0.962	0.966	0.9723	0.9754

Effects of pileup events

- Two versions of enlarged Mask R-CNN: network@PU50 is trained on events with 50 pileups, network@PU200 is obtained by further training the network@PU50 on 300 thousand events with 200 pileups
- AUC of Mask R-CNN is barely changing for events with pileups smaller than 50

		PU5	PU10	PU20	PU30	PU50
network@PU50	signal Higgs	0.9724	0.9728	0.9729	0.9732	0.9723
Hetwork@F 050	signal top	0.9743	0.9746	0.9751	0.9756	0.9754
network@PU200	signal Higgs	0.9609	0.9620	0.9636	0.9656	0.9678
network@r 0200	signal top	0.9684	0.9690	0.9701	0.9710	0.9723

	PU80	PU100	PU120	PU150	PU180	PU200
	0.9670	0.9589	0.9446	0.9016	0.8051	0.7037
	0.9718	0.9659	0.9547	0.9228	0.8732	0.8323
	0.9691	0.9696	0.9702	0.9705	0.9697	0.9691
(0.9737	0.9741	0.9744	0.9744	0.9743	0.9740

Performance of the Mask R-CNN (Higgs momentum)

Performance of the Mask R-CNN (Top momenum)

Detector effects

- The energy of final state particles are Gaussian smeared with standard deviation varying from 1% to 20% of the total energy
- Sort the events by the distance of $(\Delta p_T/p_T, \Delta m/m)$ from the origin (0,0)
- Calculate root mean squared distance (RMSD) for given percentages of most accurately predicted Higgs and Top jets.
- Higgs jet

	w/o DS	0.01E	0.02E	0.04E	0.08E	0.1E	0.12E	0.14E	0.18E	0.2E
10%	0.0098	0.0098	0.0101	0.0110	0.0129	0.0133	0.0143	0.0152	0.0167	0.0173
20%	0.0150	0.0150	0.0153	0.0165	0.0189	0.0197	0.0214	0.0225	0.0250	0.0260
30%	0.0198	0.0203	0.0202	0.0219	0.0242	0.0258	0.0277	0.0291	0.0325	0.0341
40%	0.0251	0.0261	0.0259	0.0279	0.0302	0.0322	0.0343	0.0362	0.0404	0.0424
50%	0.0322	0.0337	0.0333	0.0354	0.0372	0.0400	0.0421	0.0444	0.0496	0.0520

Top jet

	w/o DS	0.01E	0.02E	0.04E	0.08E	0.1E	0.12E	0.14E	0.18E	0.2E
10%	0.0099	0.0095	0.0100	0.0101	0.0105	0.0101	0.0108	0.0107	0.0112	0.0113
20%	0.0147	0.0144	0.0149	0.0151	0.0154	0.0152	0.0160	0.0162	0.0167	0.0170
30%	0.0192	0.0188	0.0194	0.0196	0.0201	0.0200	0.0210	0.0212	0.0219	0.0224
40%	0.0239	0.0235	0.0243	0.0246	0.0252	0.0251	0.0261	0.0265	0.0275	0.0282
50%	0.0295	0.0292	0.0302	0.0306	0.0312	0.0310	0.0324	0.0330	0.0342	0.0351

Applications to other processes

Conclusion

- MASK R-CNN is powerful in detecting jets with substructure: no artificial parameter, able to detect jets with arbitrary size, has advantage of smaller jet area thus more precise reconstruction.
- MASK R-CNN predicts jet area and momentum for a wide class of processes.
- Pileup mitigation can be implemented intrinsically.

Future prospects:

- Detect jet with unknown mass?
- The tracker has better angular resolution than the electromagnetic/hadronic calorimeter. To incorporate the particle level information in event image?