Experimental overview of QCD at LHC

- 肖朦,浙江大学
- 2024.12.14 Mini-workshop on the frontier of LHC, 福州

Hadron Collision

Hard Scattering Perturbative QCD

Parton Shower Resummation

Hadronization

Non-perturbative, PDF

MPI Tunes

Hard Scattering Perturbative QCD

Dijet measurement

- Dijet double differential cross section compared to NNLO pQCD calculation \bullet
- Probe very high Q \bullet
- Extract α_s and PDF $\alpha_{s(m_z)} = 0.1179 \pm 0.0019$, 1% NNLO uncertainty \bullet

CMS,arXiv: <u>2312.16669</u>

Gluon PDF

• N³LO + N⁴LLa prediction, $\alpha_{S}(m_{z}) = 0.1183 \pm 0.0009$

ATLAS ATEEC CMS jets H1 jets HERA jets CMS tt inclusive Tevatron+LHC tt inclusive CDF Z p_ Tevatron+LHC W, Z inclusive τ decays and low Q² $Q\overline{Q}$ bound states PDF fits e^+e^- jets and shapes Electroweak fit Lattice World average ATLAS Z p₁ 8 TeV

ATLAS, <u>arXiv:2309.12986</u>

Hadron Collision

Parton Shower Resummation

Hadronization

Non-perturbative, PDF

Hadron Collision

Jet substructure

- MC simulation
- Theoretical calculation

Parton Shower Resummation

Hadronization

Non-perturbative, PDF

Jet substructure in searches

- Identification of boosted jets types
 - Benefit greatly from developments in machine learning techniques

ATL-PHYS-PUB-2023-017 **CMS-PAS-BTV-22-001**

Jet substructure in searches

- Identification of boosted jets types
 - Benefit greatly from developments in machine learning techniques
 - rely on jet substructure inputs, PS model crucial

CMS-PAS-EXO-24-007

Understanding and improving PS

• Traditional jet substructure observables: event shapes, soft-drop mass

Recent CMS jet substructure measurements

Reference, \sqrt{s}	Final state	Jets flavours, p_T (GeV)	Observables
<u>1808.0734</u> 13 TeV pp	tī	q/g-jets (AK4), p _T >30 g-jets (AK4), p _T >30 b-jets (AK4), p _T >30	Jet substructure ar softdrop observabl
<u>1809.08602</u> 5.02 TeV pp/PbPb	jets	q/g-jets (AK3), p _T >30	Jet shapes
<u>1911.038</u> 13 TeV pp	$t\overline{t}$	top-jets (XC12), p _T >400	XCone-groomed je mass
<u>2004.00602</u> 5.02 TeV pp/PbPb	jets	q/g-jets (AK4), p_T >120	Jet charge
<u>2101.0472</u> 5.02 TeV pp/PbPb	dijets	q/g-jets (AK4), p_T >50	Jet shapes
<u>2109.0334</u> 13 TeV pp	dijets Z+jets	q/g-jets (AK4), p _T >30 q-jets (AK4), p _T >30	Generalised angularities
<u>2210.08547</u> 5.02 TeV pp/PbPb	jets	q/g-jets, b-jets (AK4), p _T >120	Jet shapes
<u>2211.01456</u> 13 TeV pp	tt	top-jets (XC12), p _T >400	XCone-groomed je mass
<u>2312.16343</u> 13 TeV pp	dijets	q/g-jets (AK4, AK8), p _T >700	Lund plane
<u>2312.17103</u> 13 TeV pp	Jets	q/g-jets (AK4), p _T >550	2D angular correlations
<u>2402.13864</u> 13 TeV pp	dijets	q/g-jets (AK4), 97 <p<sub>T<1784</p<sub>	Energy correlator
<u>2405.02737</u> 5.02 TeV pp/PbPb	γ +jet	q/g-jets (AK2), p _T >40	Groomed jet radius, girth

Understanding and improving PS

• Traditional jet substructure observables: event shapes, soft-drop mass

Decluster jets to mimic shower chain Record **AR** and **kT** of each splitting

Lund Plane

Lund Plane measurements

Data/MC differences already been used to calibrate jet substructure at CMS

ALICE: arXiv:2111.00020 CMS: arXiv:2312.16343 ATLAS: Phys. Rev. Lett 124 (2020) 02 ATLAS: arXiv:2407.10879 (W/top jets)

Emission density ρ (k, Δ R)

Theory summary talk at BOOST 2024

EEC vs PS models

CMS, PRL 133 (2024), 071903

97 ~ 1784 GeV

Data vs various parton shower model, difference ~ 10%

No model match data well in all p_t^{jet} region

- : Exp systematic
- : Theo systematic

Many EEC measurements ongoing

STAR: PoS HP2023 (2024) 175

19

ALICE pp and pPb

Many EEC measurements ongoing

CMS PbPb, CMS-PAS-HIN-23-004

E3C/E2C: a new way to extract α_S

Chen, Gao, Li, Xu, Zhang, Zhu, *arXiv:2307.07510*

E3C/E2C at different energy scales

Asymptotic freedom!

E3C/E2C vs NNLLapprox

$$\begin{split} \alpha_s(m_Z) &= 0.1229^{+0.0040}_{-0.0050} \\ &= 0.1229^{+0.0014(stat.)+0.0030(theo.)+0.0023(exp.)}_{-0.0012(stat.)-0.0033(theo.)-0.0036(exp.)} \end{split}$$

Uncertainty ~ 4%, Q~ O(10) GeV, collinear regime Most precise from jet substructure to date

What could be done in the future?

- A lot of developments in PS models
 - Spin correlation in PS
 - Towards NLL and NNLL models, Panscale, Deductor, ALARIC..
- Interesting to be tested experimentally

What could be done in the future?

- New ideas of using EEC to probe variety of physics
 - Heavy flavor
 - Confinement
 - Top and W mass measurements

Toponium

A ttbar bound state with a cross section of 7.1 pb an uncertainty of 11%

