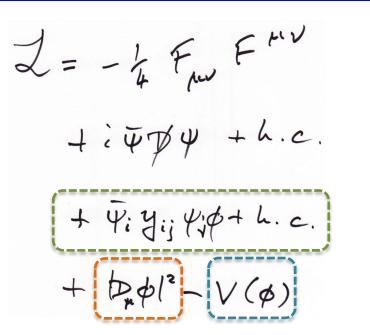

Higgs physics at LHC

Lei Zhang (张雷)


School of Physics, Nanjing University

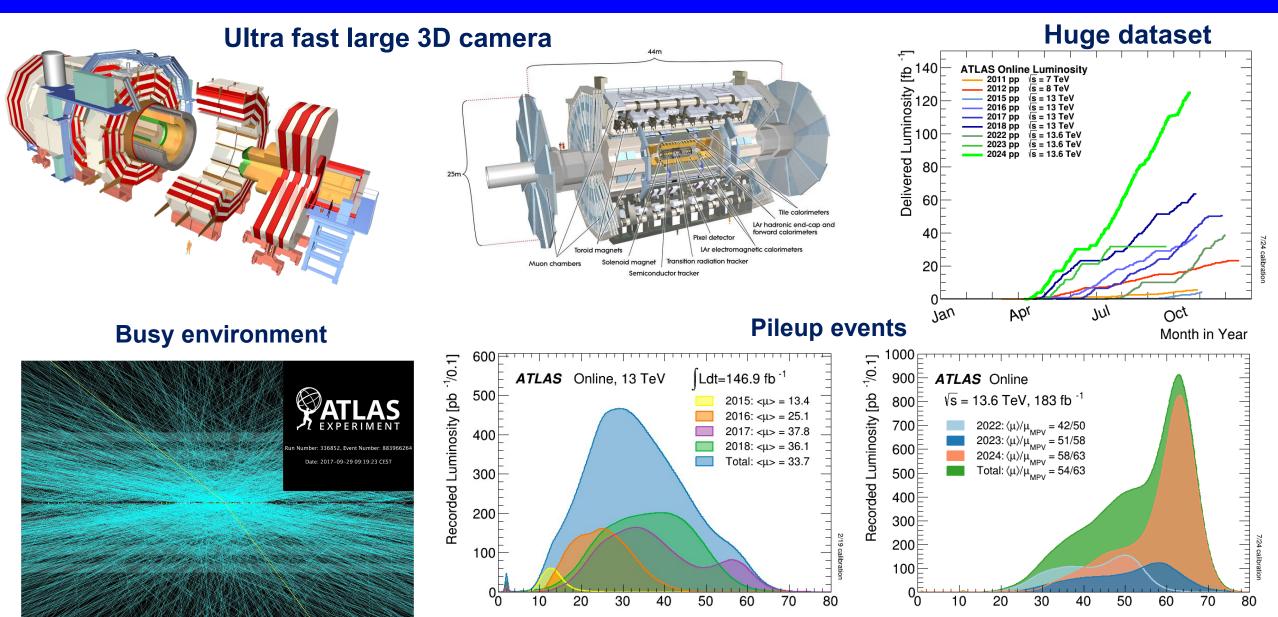
29th Mini-workshop on the frontier of LHC, 福州, 15 Dec 2024

Higgs: the lord of Standard Model

Higgs: the lord of Standard Model

once m_H is known, it can be well tested **Couples to all massive bosons and fermions** with a strength related to the particles' mass

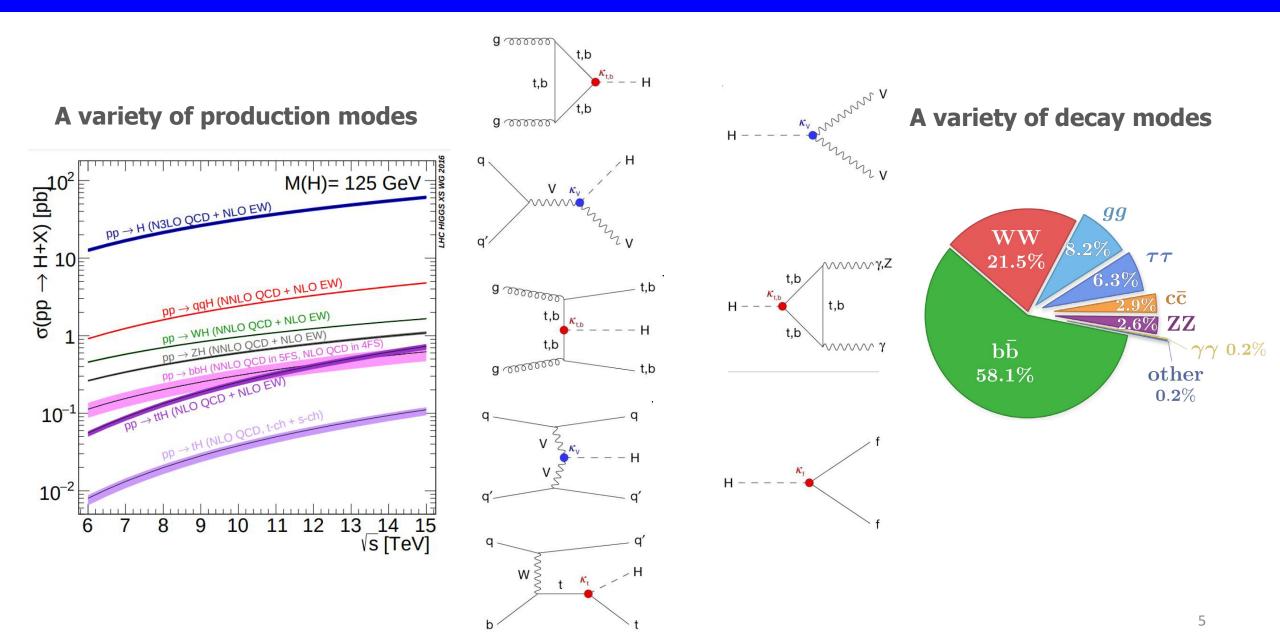
- production cross-section
- branching ratios
- total decay width


 $V(\phi)$ $\sim \lambda$ $\propto m_f$ $\propto m_V^2$

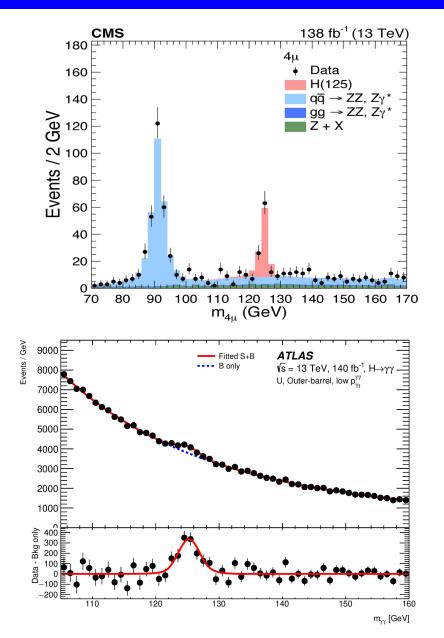
Investigating with better precision and granularity, probing rarer processes and more extreme phase-spaces, etc.

. . .

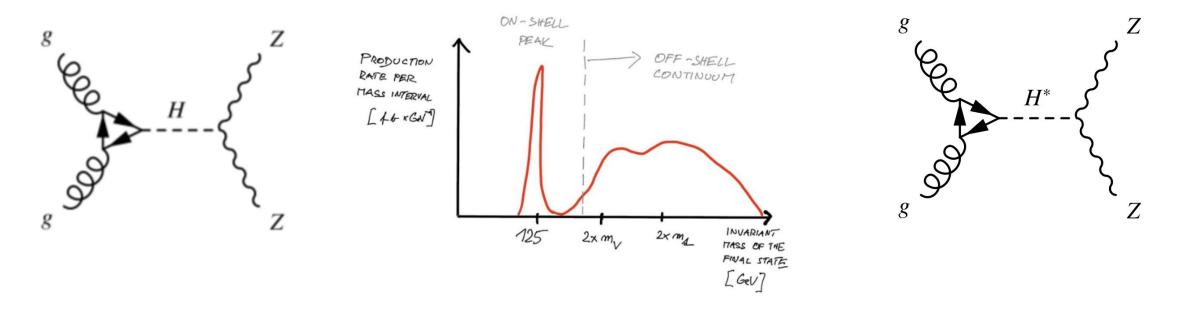
In this talk, I will try to give an overview over current best knowledge and most recent results - strong & personal selection! \Rightarrow 15 out of the 19 free parameters of the SM are connected to the higgs boson


ATLAS and CMS: exploring at energy frontier

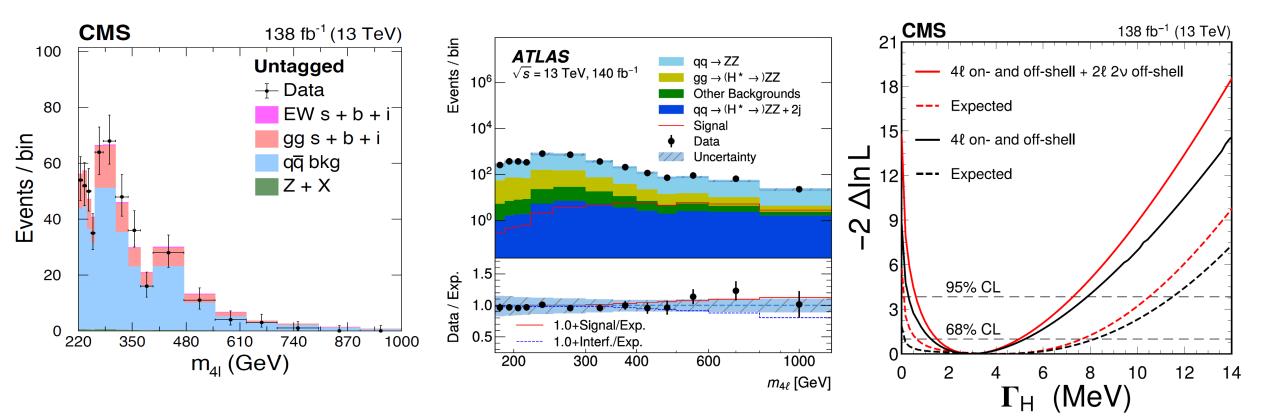
Mean Number of Interactions per Crossing


Mean Number of Interactions per Crossing

Rich phenomenology at the LHC

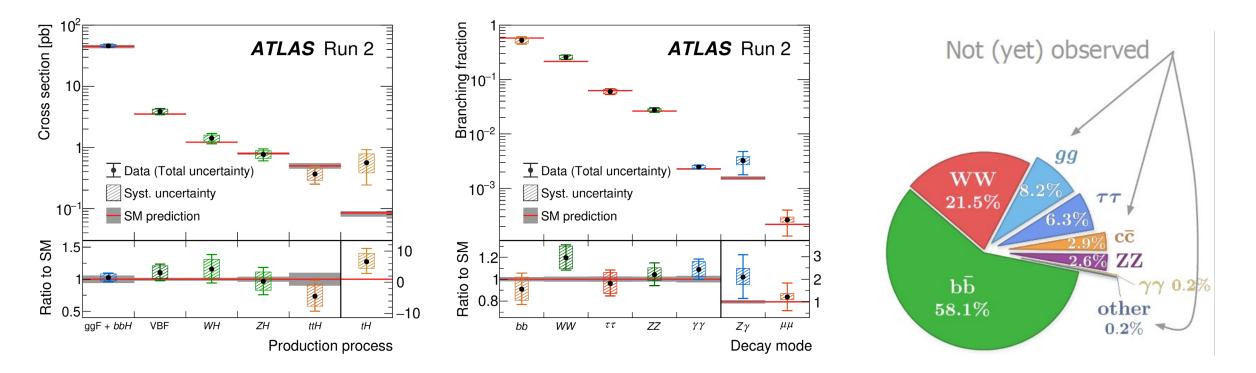

Higgs property: mass

- Measured in clean final states with Higgs boson fully reconstructed
- ► CMS: $H \rightarrow ZZ^* \rightarrow 4$ leptons (e/μ) [arXiv:2409.13663]
 - $m_{\rm H} = 125.08 \pm 0.10 \text{ (stat.)} \pm 0.05 \text{ (syst.)} \text{ GeV}$
- > ATLAS: combination [PRL 131 (2023) 251802]
 - $H \rightarrow \gamma \gamma$ and $H \rightarrow ZZ^* \rightarrow 4$ leptons (e/ μ)
 - $m_{\rm H} = 125.11 \pm 0.09 \text{ (stat.)} \pm 0.06 \text{ (syst.)} \text{ GeV}$
- Most precise measurements to date
 - Mass resolution: < 1‰
 - in very good agreement with each other

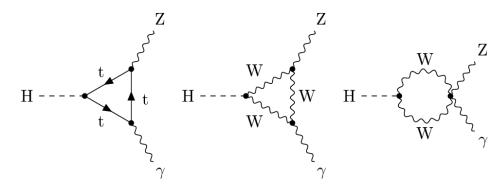

Higgs-boson total width

- > Assuming SM: Γ_{H} = 4.1 MeV for m_H ~ 125 GeV
 - Constrain unmeasured/able decays, modified by BSM decays, e.g. dark-matter
 - At LHC, direct measurements from line shape or flight distance, is impossible
- > Constrain via $\Gamma_{H} \propto \sigma$ (off-shell) / σ (on-shell)
 - Assumption: same couplings between off- and on-shell

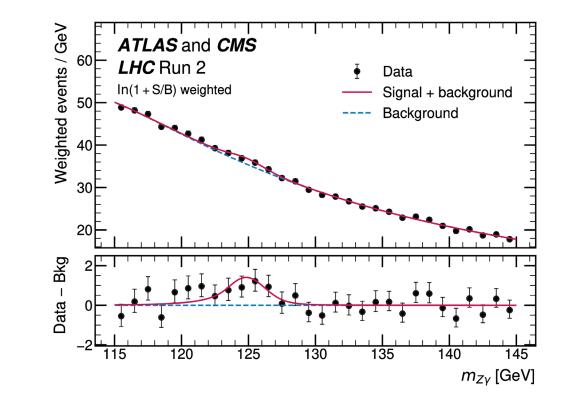
Higgs-boson total width


ATLAS: Γ_H = 4.3^{+2.7}_{-1.9} [arXiv:2412.01548]
 CMS: Γ_H = 3.0^{+2.0}_{-1.5} [arXiv:2409.13663]

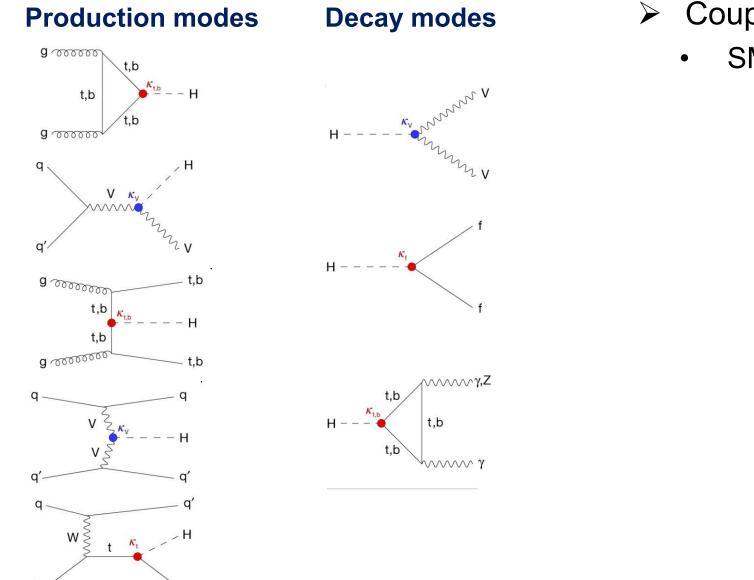
Higgs property: production and decay


- Dominant production modes and > 88% of potential SM decays observed
 - with < 10-20% precision

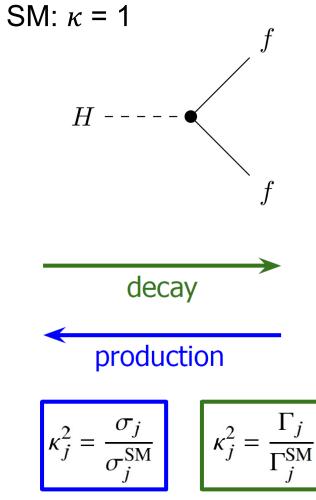
- ATLAS: Nature 607 52 (2022)
- CMS: Nature 607 60 (2022)



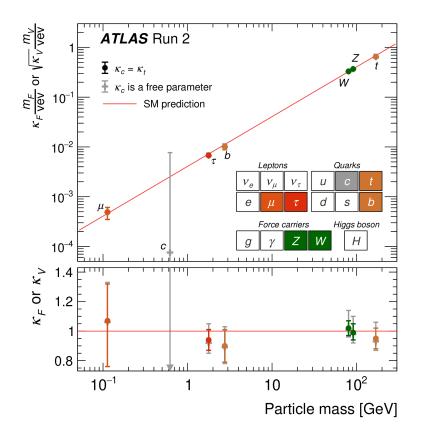
Higgs property: production and decay

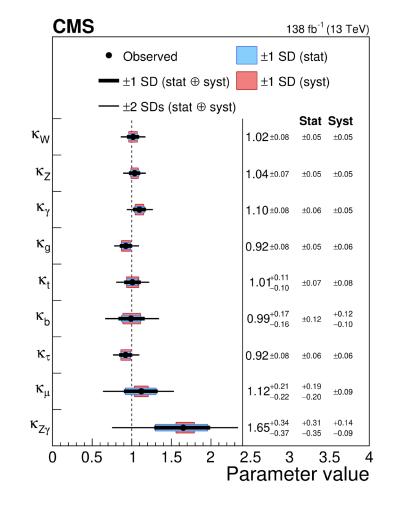

- \succ H→Zγ: Br(H→Zγ) = 1.54×10⁻³
 - rare H decay via loop diagrams sensitive to new physics

- ATLAS and CMS combination
 - Obs. (exp.) significance of 3.4 (1.6)
 - First evidence of H decay
 - $\mu = 2.2 \pm 0.6$ (stat) (syst)
- > Agrees with SM prediction within 1.9 σ



Higgs property: coupling


h


• Coupling-strength modifier κ

Higgs property: coupling

- Good agreement with SM prediction, within < 10% uncertainty</p>
 - Still many missing pieces...

CMS: Nature 607 (2022) 60

ATLAS: Nature 607 52 (2022)

Higgs: new territory to explore

Why is the electroweak interaction so much stronger than gravity?

- Are there new particles close to the mass of the Higgs boson?
- Is the Higgs boson elementary or made of other particles?
- Are there anomalies in the interactions of the Higgs boson with the *W* and *Z* bosons?

Why is there more matter than antimatter in the Universe?

- Are there charge-parity violating Higgs decays?
- Are there anomalies in the Higgs self-coupling that would imply a strong first-order early-Universe electroweak phase transition?
- Are there multiple Higgs sectors?

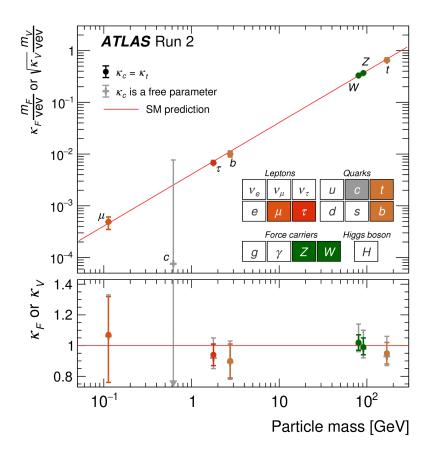
What is dark matter?

- Can the Higgs boson provide a portal to dark matter or a dark sector?
- Is the Higgs lifetime consistent with the Standard Model?
- Are there new decay modes of the Higgs boson?

What is the origin of the vast range of quark and lepton masses in the Standard Model?

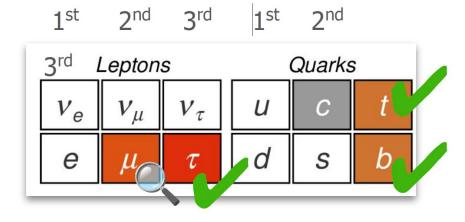
- Are there modified interactions to the Higgs boson and known particles?
- Does the Higgs boson decay into pairs of quarks or leptons with distinct flavours (for example, H → μ⁺ τ⁻)?

What is the origin of the early Universe inflation?


• Any imprint in cosmological observations?

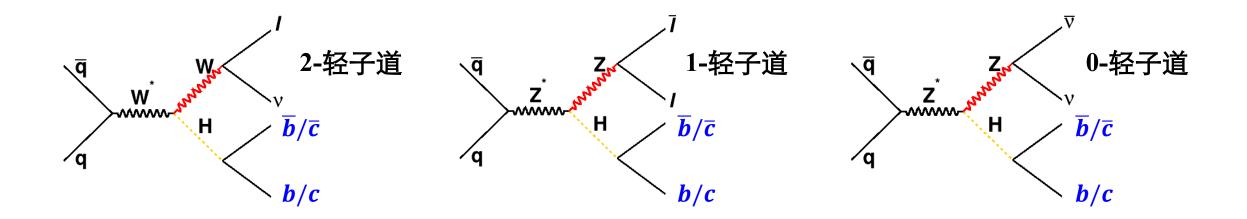
Adapted from G. Salam, L.T. Wang, G. Zanderighi; Nature 607, 41 (2022)

- Higgs boson might be key to answering many open questions
 - Self-coupling, Couplings to other particles, CP violation? Total width, +much more, + direct searches for new physics
 - Keep investigating with better precision and granularity, probing rarer processes, more extreme phase-spaces, etc.

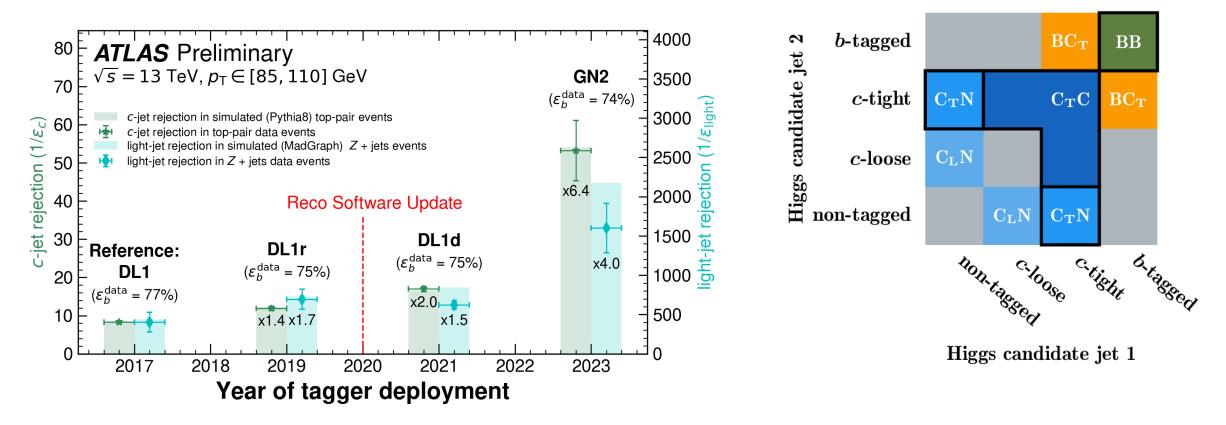

Beyond the 3rd generation

Yukawa coupling: 9 out of 19 free parameters of SM

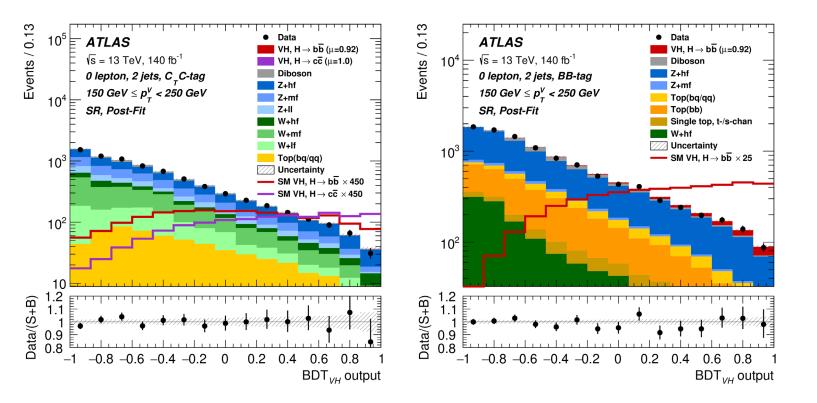
- > On the way to probe all Yukawa couplings
 - the charm quark standing at the frontier


Fermion generations

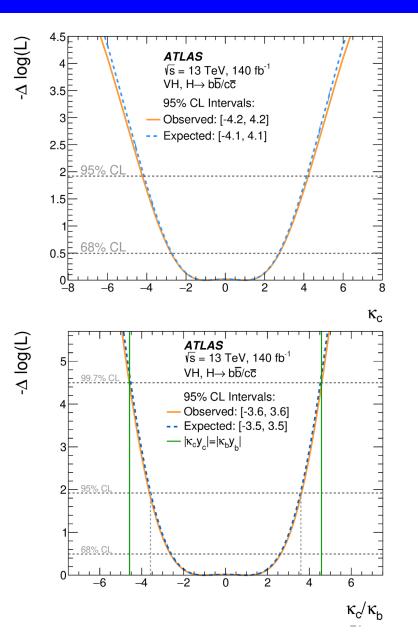
VH(→cc): ATLAS final Run-2


- > $BR(H\rightarrow cc)=2.9\%$, 2nd largest BR not yet observed
 - Most direct & sensitive probe of Higgs-charm coupling
 - Quark final state: huge multi-jet backgrounds
- > V(\rightarrow leptons)H: golden channel for H \rightarrow bb/cc
 - Significant XS and effective multi-jet background suppression

[ATLAS-CONF-204-010]

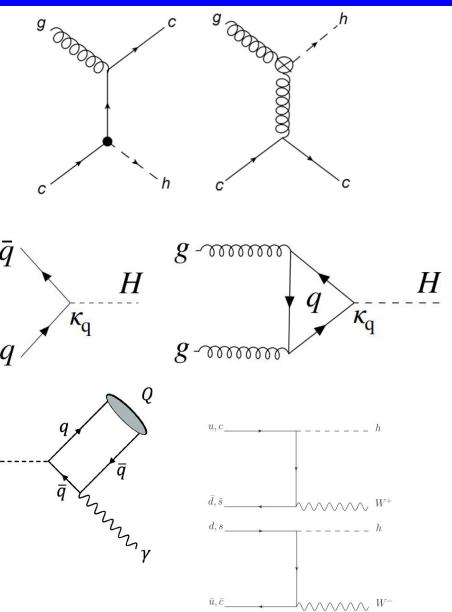

VH(→cc): ATLAS final Run-2

- Flavor tagging is the key experimental technique
 - Novel ML based tagging, refined calibration with better precision
 - Finer categorization and simultaneously b/c tagging



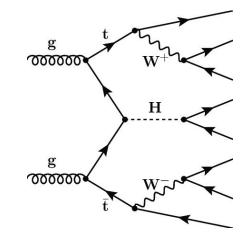
VH(→cc): ATLAS final Run-2

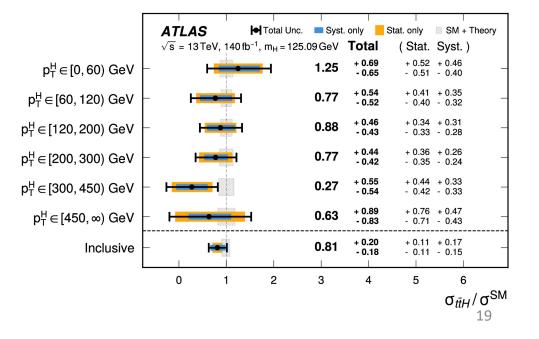
- > Simultaneous analysis of VH, $H \rightarrow bb$ and $H \rightarrow cc$
 - First direct constrain on the ratio of $\kappa_{\rm c}$ and $\kappa_{\rm b}$



• Similar result obtained by CMS [PRL 131 (2023) 061801]

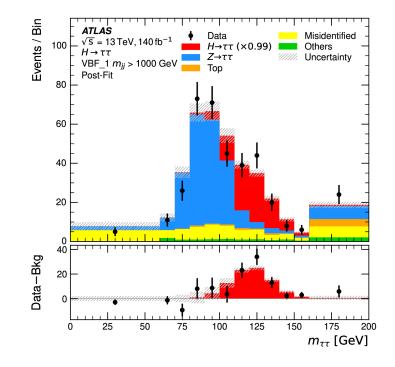
Attempts for probing κ_c and other light quarks

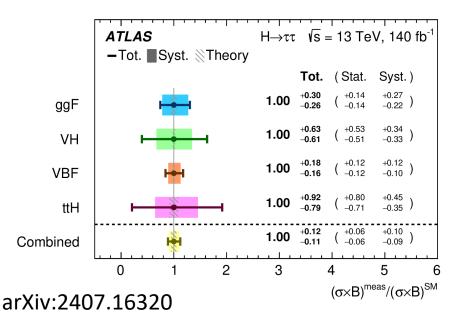

- H+c, proposed in [PRL 115 (2015) 211801]
 - Dominant diagram not sensitive to κ_c (~99%)
 - ATLAS [arXiv:2407.15550] and CMS [HIG-23-010]
 - $\sigma(H+c) < \sim 10 \text{ pb} [< \sim 4 \times \text{SM}] \Rightarrow \kappa_c : < \sim 100 @95\% \text{ CL}$
- Light-quark Yukawa in inclusive H production
 - H→ZZ* →4I: CMS [HIG-23-011]
 - κ_q affects the production and width
 - Simultaneous constraints on κq for q = u, d, s, c
- Exclusive $H \rightarrow Q\gamma^*$: [idea: PRD 88, 053003]
- W[±]H charge asymmetry: [idea: JHEP 02 (2017) 083]



ttH(→bb): ATLAS final Run-2 [HIGG-2020-24]

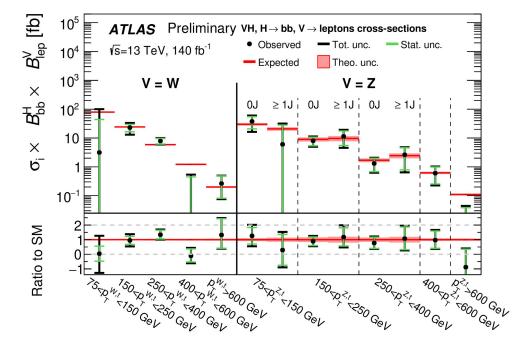
- ttH: most sensitive probe of Higgs-top quark coupling
 - H \rightarrow bb: dominant decay
- Extremely difficult final state
 - Reco/ID of 4 b-jets and Higgs candidate
 - Major background: tt + b-jets


- Best single measurement to date!
 - Obs. (exp.) sign. 4.6 (5.4)σ
 - Uncertainty ~halved ; increased granularity
 - Consistent with SM prediction up to high energy!



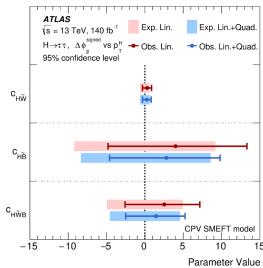
Precision test of Yukawa coupling

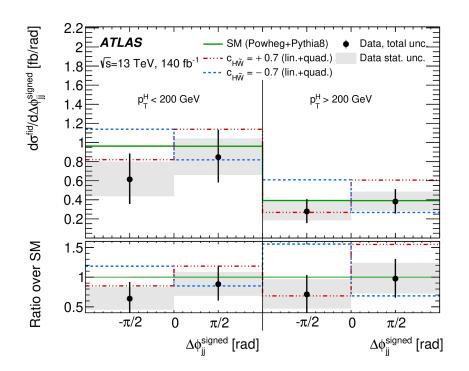
- > Yukawa coupling predicts: $y_f \sim m_f$
 - Quark mass difficult to measure precisely due to non-perturbative effect
 - Lepton mass can be measured precisely, used to test Yukawa coupling
- \rightarrow H \rightarrow $\tau\tau$ decay has largest BR to leptons, Re-analysis of Run 2 data
 - Strongest decay mode for measuring VBF xsec (+ ≈ 15% wrt last round)



Studying the Higgs-boson's kinematics

- > Differential cross-section measurements as function of kinematic variables
 - Reveal subtle deviations from SM prediction
- Two types of differential measurements:
 - Unfolded fiducial differential measurements
 - Simplified Template Cross-Sections (STXS)

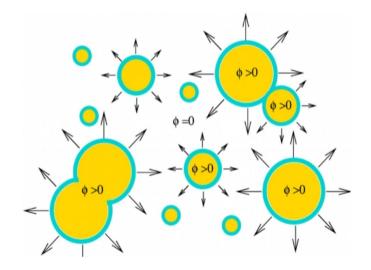

- ➢ ATLAS V(→leptons)H(→bb) STXS
 - Most granular and precise STXS
 measurement of VH

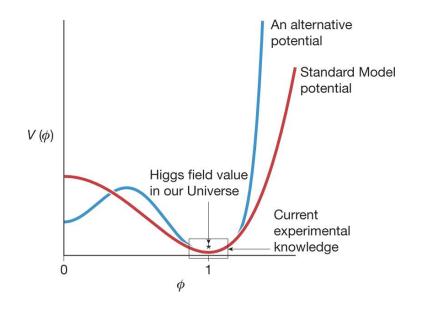


Studying the Higgs-boson's kinematics

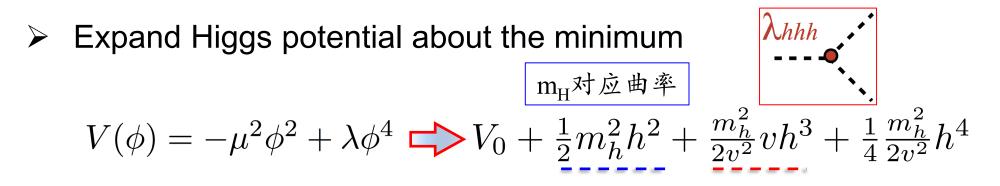
- > Differential cross-section measurements as function of kinematic variables
 - Reveal subtle deviations from SM prediction
- > Two types of differential measurements:
 - Unfolded fiducial differential measurements
 - Simplified Template Cross-Sections (STXS)
- > $H \rightarrow \tau \tau$: unfolded differential cross-section measurements

 SMEFT interpretation: constrain CP odd operators

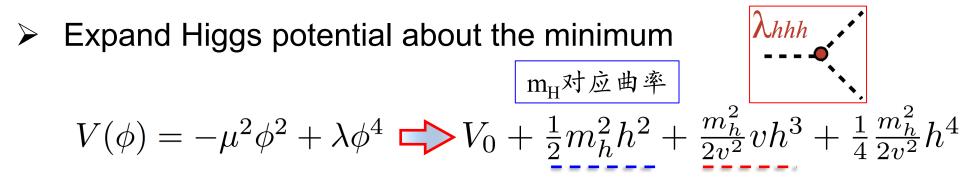


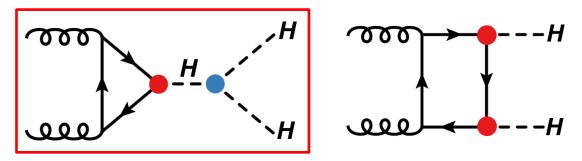

arXiv:2407.16320

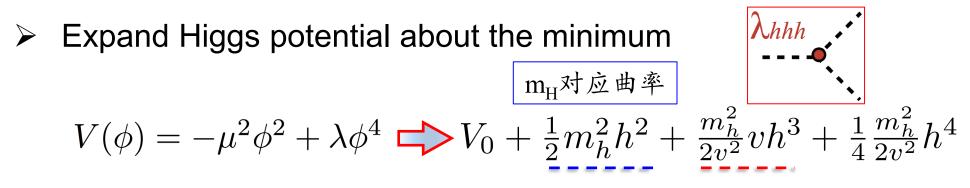
Baryogenesis and Higgs potential

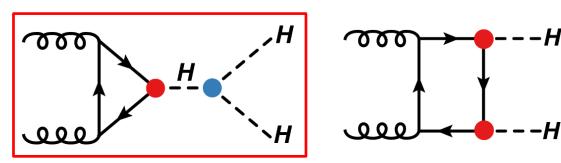

- > Why matter far more than anti-matter?
- Requests from Sakharov Conditions
 - More CP violation than SM
 - First order phase transition, departure from Thermal Equilibrium

Higgs potential determined EW symmetry breaking: 1st or 2nd order?



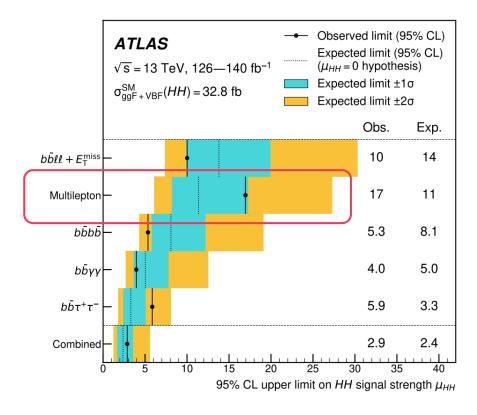

Probe Higgs potential


Probe Higgs potential


- > Higgs-self coupling (λ_{hhh}) is crucial for probing Higgs potential
 - Measured in double Higgs production (di-Higgs) at LHC

Probe Higgs potential

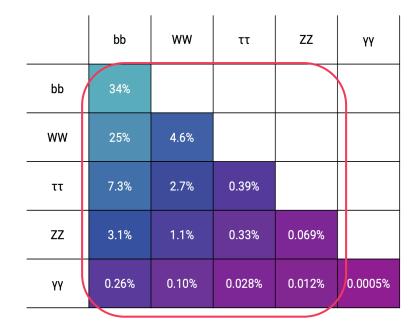
- > Higgs-self coupling (λ_{hhh}) is crucial for probing Higgs potential
 - Measured in double Higgs production (di-Higgs) at LHC

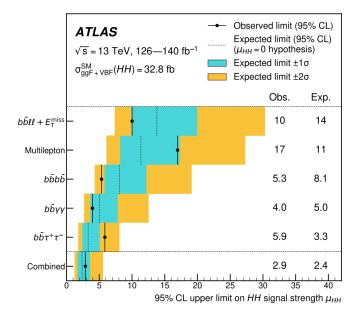


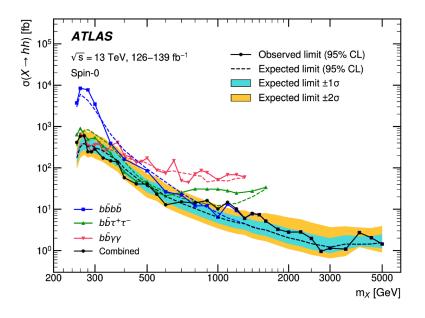
- Di-Higgs at LHC: σ(HH) ~40fb
 - ggF dominant mode (90%), VBF (5%)
 - Complex decay products

	bb	WW	ττ	ZZ	ΥY
bb	34%				
ww	25%	4.6%			
ττ	7.3%	2.7%	0.39%		
ZZ	3.1%	1.1%	0.33%	0.069%	
YY	0.26%	0.10%	0.028%	0.012%	0.0005%

Higgs self-coupling

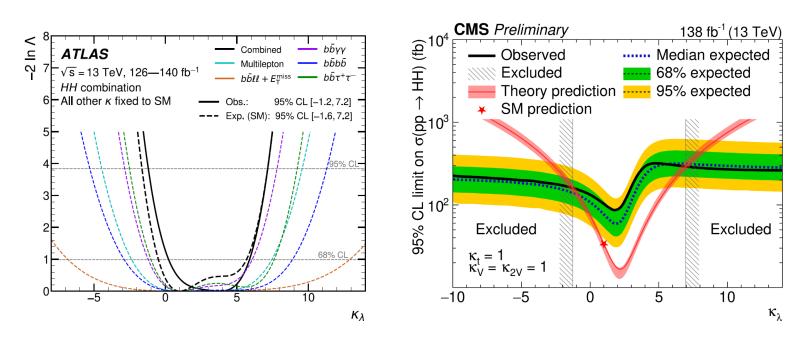

- > All HH channels explored
 - Multi lepton channel included for the first time at ATLAS [JHEP 08 (2024) 164]

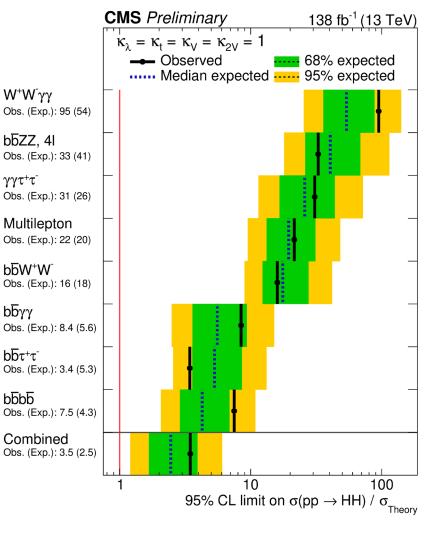



	bb	ww	ττ	ZZ	ΥY
bb	34%				
ww	25%	4.6%			
ττ	7.3%	2.7%	0.39%		
ZZ	3.1%	1.1%	0.33%	0.069%	
YY	0.26%	0.10%	0.028%	0.012%	0.0005%

Higgs self-coupling

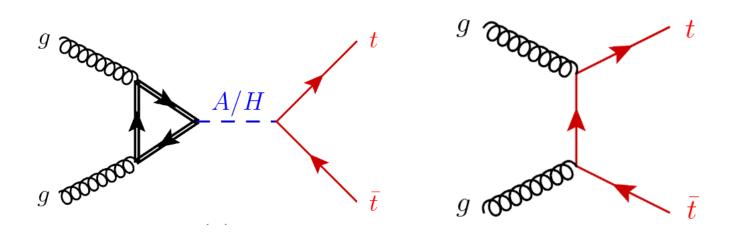
- Statistics combination to maximize the sensitivity
 - Non-resonant HH ATLAS [PRL 133, 101801 (2024)]
 - BSM resonant HH ATLAS [PRL 132, 231801 (2024)]

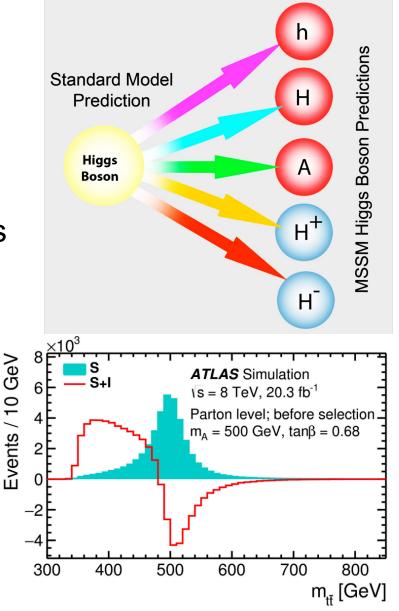




Higgs self-coupling

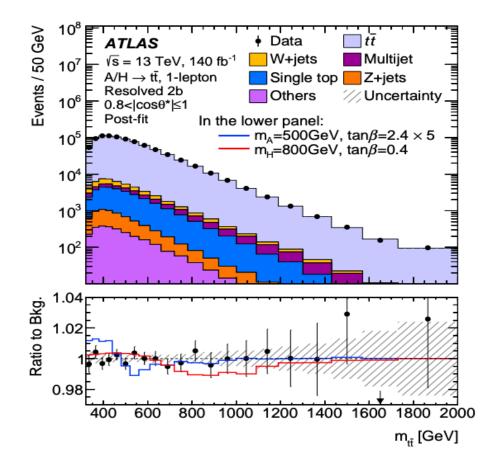
- CMS also release new results [CMS-PAS-HIG-20-011]
 - adds additional channels: bbWW, WWγγ, and ττγγ, and additional VHH production mode for 4b channel
 - > 95% CL limit on κ_{λ}
 - ATLAS: $-1.2 < \kappa_{\lambda} < 7.2 \ (-1.6 < \kappa_{\lambda} < 7.2)$
 - CMS: $-1.39 < \kappa_{\lambda} < 7.02 \ (-1.02 < \kappa_{\lambda} < 7.19)$

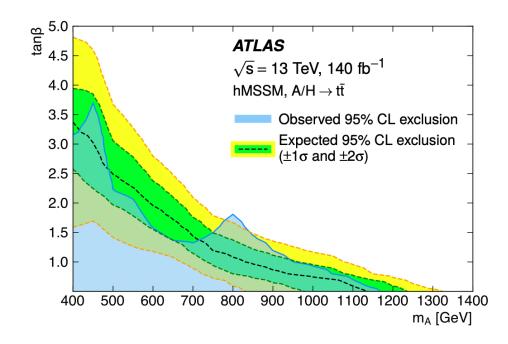



Extended Higgs sector

- > Extension of Higgs sector could change the Higgs potential.
 - For example, SM plus one singlet extension, allow first order EW phase transition

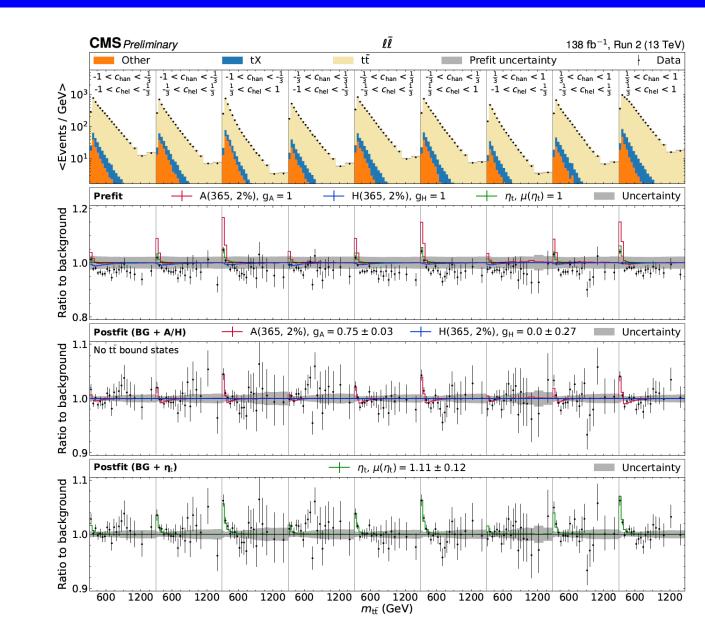
BSM Higgs boson


- Two-Higgs Doublets Model (2HDM)
 - Minimum extension of Higgs sector
 - Requested by MSSM
 - Two free parameters at tree level: m_A , tan $\beta = v_u/v_d$
- > Top quark, heaviest particle, sensitive to BSM Higgs
 - Severe interference with SM
 - Signature difficult to detector



BSM Higgs boson

- Develop new analysis methods
 - Precise modeling signal theoretically and new statistics analysis for interference effect



Most sensitive channel at high mass and low aneta

CMS results on A/H→tt

- CMS preliminary results show
 - Excess at around ttbar threshold
 - A/H boson?
 - $t\overline{t}$ bound state (η_t) ?
- Both CMS and ATLAS refining analysis near ttbar threshold
 - Stay tuned

CMS-PAS-HIG-22-013

Higgs portal

u

H

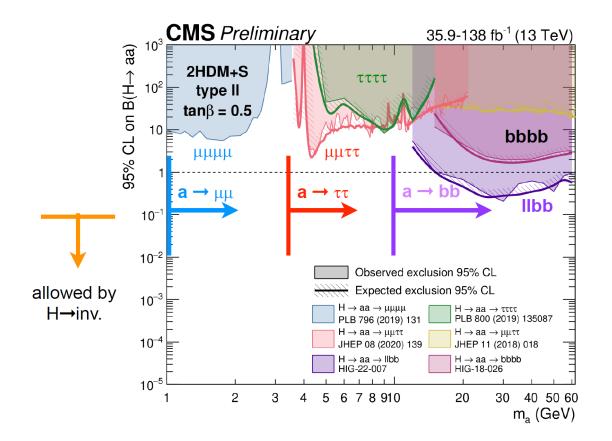
Higgs as a portal to dark matter, e.g. 2HDM+a

Pseudoscalar(a) via Higgs decay

•

dark quarks?

dark forces?


dark

higgs?

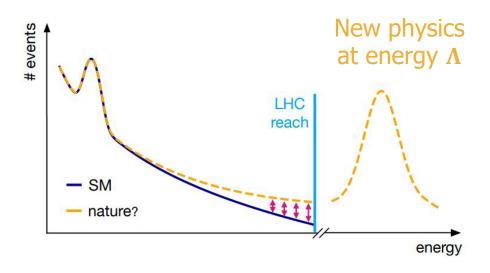
With long life time, aka, long lived particles (LLP) • dark leptons? **2HDM DM models** Muon spectrometer < TeV <TeV ~10 GeV χ^0 H± Α 125 GeV <TeV ~102 GeV а н n calorimeters pt > 1.5ns Hptracking detectors t < 1.5ns

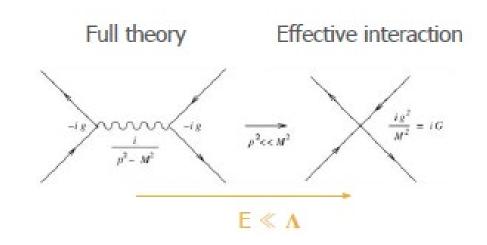
Higgs portal

Pseudoscalars (a) via Higgs decays

- all consider H→aa, channels are complementary
- y=1 means Higgs decays 100% into new scalars

Interpretation: SMEFT


- Standard Model Effective Field Theory (SMEFT)
 - model-independent way to parametrise effects of new physics appearing at high energy Λ (>> vev) at much lower energy (E $\ll \Lambda$)

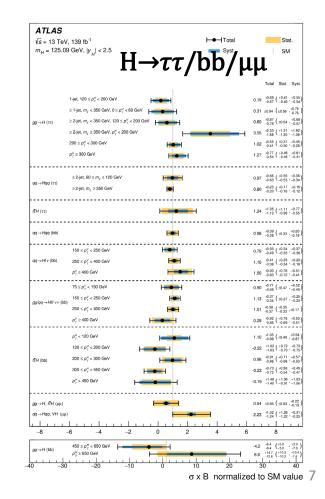

$$\mathcal{L}_{eff} = \mathcal{L}^{SM} + \mathcal{L}^{D=6}, \qquad \mathcal{L}^{D=6} = rac{1}{\Lambda^2} \sum_i c_i^{(6)} \mathcal{O}_i^{(6)}$$

- O_i: operators built from SM fields and respect SM symmetries
- c_i: Wilson coefficients ~ strength of effective interaction (SM: 0)
- Observables

$$\sigma_{\rm STXS} = \sigma_{\rm SM} + \sigma_{\rm int} + \sigma_{\rm BSM}$$

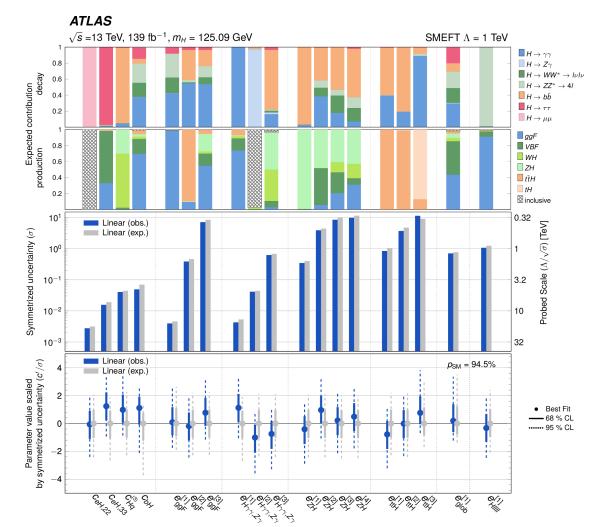
- e.g. cross-section
- SM-BSM interference $\sim 1/\Lambda^2 \Rightarrow$ "linear"
- BSM~1/ $\Lambda^4 \Rightarrow$ "quadratic"

Interpretation of ATLAS STXS measurements

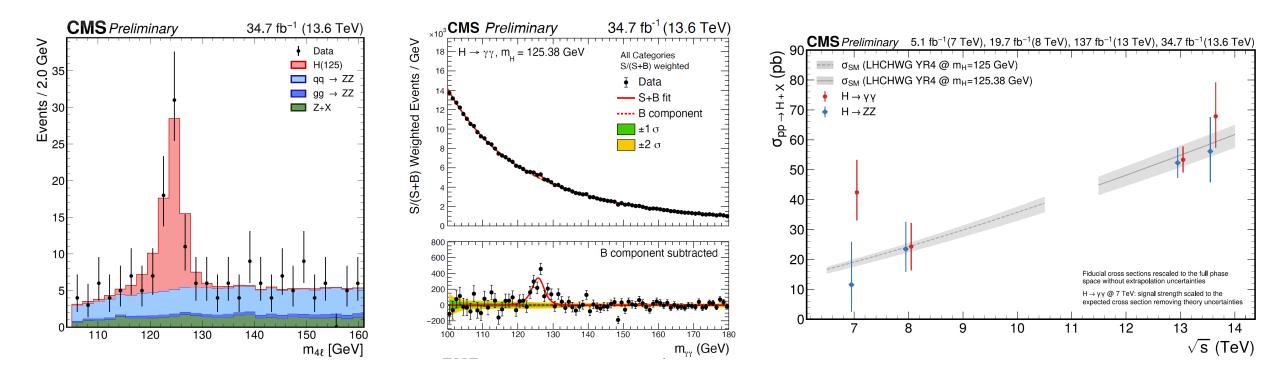

> STXS: p_T^H (and m_{ii} for ggF/VBF), sensitive to O(50) SMEFT operators O_i

- -

471 40


√s = 13 Te m _H = 125.0	09 GeV, y _H < 2.5	7 V V	⊣Total Syst.	Sta
				Total Stat.
	0-jet, p_{_{7}}^{_{H}} < 200 GeV	•	1.27	+0.18 -0.17 (±0.08 , _
gg→H (WW*)	1-jet, $p_{\gamma}^{\prime\prime} < 60 \text{ GeV}$	 -	0.66	+0.59 (+0.30 ,+ -0.58 (-0.29 ,+
	1-jet, $60 \le p_{\gamma}^{\prime\prime} < 120 \text{ GeV}$	H	0.68	$^{+0.49}_{-0.46}$ (±0.32 $^{+}_{-}$
	1-jet, $120 \le p_T^H < 200 \text{ GeV}$	H HAR I	1.43	+0.89 -0.76 (+0.63 ,+
	\geq 2-jet, $p_{_T}^{\prime\prime} < 200~{\rm GeV}$	I I	1.54	+0.95 (+0.43 +
	$p_{\gamma}^{\prime\prime} \ge 200 \text{ GeV}$	H HOM H	1.37	+0.91 (+0.63 ,+ -0.76 (-0.62 ,-
qq→Hqq (WW*)	\geq 2-jet, 350 $\leq m_{\rm ji}$ < 700 GeV, $p_{\gamma}^{\prime\prime}$ < 200 GeV	H =	0.12	+0.60 (+0.45 -0.58 (-0.41 ,±
	\geq 2-jet, 700 $\leq m_{ji}$ < 1000 GeV, $p_{\gamma}^{\prime\prime}$ < 200 GeV		0.57	+0.68 (+0.57 , +
	$2 2 4 4, 1000 2 m_g < 1000 000, p_g < 200 000$		1.32	+0.64 (+0.50 +
	\geq 2-jet, $m_j \geq$ 1500 GeV, $p_T^H <$ 200 GeV	•	1.19	+0.48 (+0.42 ,+
	≥ 2-jet, m_j ≥ 350 GeV, p_T^H ≥ 200 GeV		1.54	+0.61 (+0.51 ,+ -0.51 (-0.46 ,-
gg→H (ZZ*)	0-jet, $p_{\gamma}^{H} < 10 \text{ GeV}$	••	0.93	+0.36 (+0.30 , +
	0-jet, $10 \le p_7^H < 200 \text{ GeV}$	H	1.15	+0.23 (+0.18 , +
	1-jet, $p_{\gamma}^{\prime\prime}$ < 60 GeV		0.31	+0.43 (+0.40 ,+
	1-jet, $60 \le p_7'' < 120 \text{ GeV}$	⊢● -	1.42	+0.52 (+0.42 ,+
	1-jet, $120 \le p_{_T}^{_H} < 200 \text{ GeV}$	—	0.41	+0.84 -0.59 (+0.80 ,+ -0.58 ,-
	≥ 2-jet, $p_{\gamma}^{\prime\prime}$ < 200 GeV		0.35	+0.60 (+0.55 ,+ -0.53 (-0.51 ,-
	$p_{\gamma}^{\prime\prime} \ge 200 \text{ GeV}$		2.41	+1.52 (+1.32 ++
qq→Hqq (ZZ*)	VBF		1.49	+0.63 (+0.61 ,+
	≥ 2-jet, 60 < m _g < 120 GeV		1.51	+2.83 (+2.79 ,+
	\geq 2-jet, $m_{j}\geq$ 350 GeV, $p_{_{T}}^{_{H}}\geq$ 200 GeV		0.18	+2.09 (+2.08 , +
VH-lep (ZZ*)			1.29	+1.67 (+1.67 , -1.05 , -1.05 , -1.05
fĨH (ZZ*)			1.73	+1.77 (+1.72 ,+

	eV, 139 fb ⁻¹	Total Sta
m _H = 125	.09 GeV, y _H < 2.5	
		Total Stat. Sj
gg →H (YY)	0-jet, p _T ^H < 10 GeV	$0.66 \stackrel{+0.27}{_{-0.26}} (\pm 0.24, \pm 0.24)$
	0-jet, $10 \le p_{\gamma}^{\prime\prime} < 200 \text{ GeV}$	1.24 +0.18 (±0.15 , +0
	1-jet, $p_T^{H} < 60 \text{ GeV}$	1.16 +0.39 -0.38 (±0.36 +0
	1-jet, $60 \le p_{\gamma}^{\prime\prime} < 120 \text{ GeV}$	1.14 +0.40 (±0.33 + 0
	1-jet, $120 ≤ p_{T}^{H} < 200 \text{ GeV}$	0.93 +0.57 (+0.53 +0
	≥ 2-jet, m _j < 350 GeV, p ^H ₇ < 120 GeV	0.58 +0.56 (+0.53 +0
	≥ 2-jet, m_{ij} < 350 GeV, 120 ≤ p_{γ}^H < 200 GeV	1.31 +0.50 (+0.48 +0
	≥ 2-jet, m_{ij} ≥ 350 GeV, $p_{ij}^{\prime\prime}$ < 200 GeV	1.09 ±0.95 (+0.91 +0
	$200 \le p_{\tau}^{\prime\prime} < 300 \text{ GeV}$	1.56 +0.45 (+0.41 +0
	$300 \le p_{\gamma}^{\prime \prime} < 450 \text{ GeV}$	0.17 +0.56 (+0.54 +0
	<i>p</i> ^{<i>H</i>} ₇ ≥ 450 GeV	2.11 +1.47 (+1.42 +0
qq→Hqq (yy)	≤1-jet and VH-veto	1.05 +0.96 (+0.90 +0.00 +
	≥ 2-jet, VH-had	0.21 +0.74 (+0.72 +0
	≥ 2-jet, 350 ≤ m_j < 700 GeV, p_7^H < 200 GeV	1.28 +0.80 (+0.61 +0 -0.60 (-0.56 +-0
	≥ 2-jet, 700 ≤ m_j < 1000 GeV, p_T^H < 200 GeV	1.47 +0.84 (+0.72 +4 -0.68 (-0.64 -4
	≥ 2-jet, m_{ij} ≥ 1000 GeV, p_{T}^{H} < 200 GeV	1.31 +0.46 (+0.36 +0 -0.38 (-0.33 +-0
	≥ 2-jet, 350 ≤ m_j < 1000 GeV, p_T^H ≥ 200 GeV	0.31 +0.74 (+0.73 +0
	≥ 2-jet, m_{ij} ≥ 1000 GeV, p_{T}^{H} ≥ 200 GeV	1.69 +0.67 (+0.61 +0.67 +0.61 +
	p ^v ₂ < 150 GeV	1.75 +0.82 (+0.80 ,+t
$qq \rightarrow H v (\gamma \gamma)$	p ^v _r ≥ 150 GeV	1.65 +1.12 (+1.11 +4
gg/qq→HW/vv (γγ) p ^v ₇ < 150 GeV	-0.64
	<i>p</i> ^v ₇ ≥ 150 GeV	$0.39 \begin{array}{c} ^{+1.10}_{-0.92} \begin{pmatrix} +1.08 \\ -0.92 \end{pmatrix} \begin{pmatrix} +1.08 \\ -0.91 \end{pmatrix} \begin{pmatrix} +1.08 \\ -0.91 \end{pmatrix} \begin{pmatrix} +1.08 \\ -0.91 \end{pmatrix}$
flH (үү)	<i>p</i> ^{<i>H</i>} ₇ < 60 GeV ●●	0.83 +0.82 (+0.81 + +0.83 - 0.68 + -0.6
	60 ≤ p ⁿ / _r < 120 GeV	0.81 +0.60 (+0.59 +0
	120 ≤ p ^m _T < 200 GeV	0.65 +0.64 (+0.63 + -0.530.54 (+0.63 + -0.530.54 (-0.53 + -0.530.54 (-0.53 + -0.530.540.53 + -0.530.540.53 + -0.540.540.53 + -0.54
	200 ≤ p ^H _r < 300 GeV	1.23 +0.81 (+0.80 +0
	p _T ^H ≥ 300 GeV	1.17 +0.96 (+0.95 +0 -0.75 (-0.74 +0
tH (γγ)		2.06 +4.13 (+3.94 , +
4(7)		2.05 +0.97 (+0.88 , +1
H(Z γ)		2.09 -0.93 \-0.87' -
8	-6 -4 -2 0 2	4 6 8 10


Interpretation of ATLAS STXS measurements

- > STXS: p_T^H (and m_{ii} for ggF/VBF), sensitive to O(50) SMEFT operators O_i
- Constrain a subset of 19 coefficients or linear combinations of coefficients
 - Principal Component Analysis (PCA)
 ⇒ Linear combinations of Wilson coefficients e_i

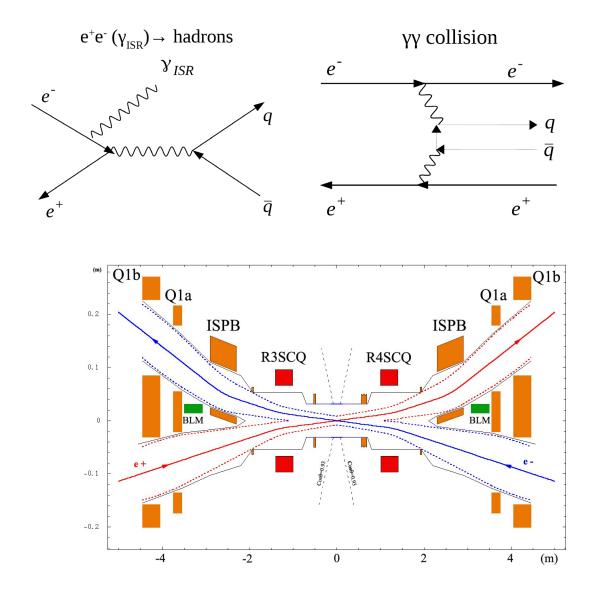
Only CP-even operators

Run-3 efforts are gaining momentum

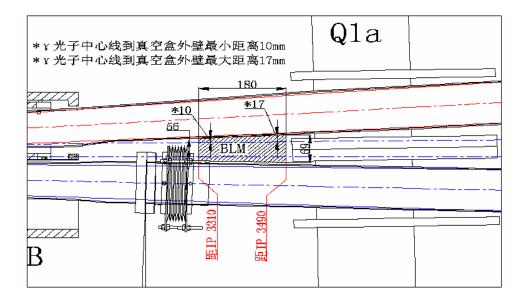
- First (differential) cross-section measurements
 - With Run 3 data in $H \rightarrow ZZ^* \rightarrow 4l$ and $H \rightarrow yy$ by CMS.
 - Similar results from ATLAS [EPJC 84 (2024) 78]

CMS-PAS-HIG-24-013 CMS-HIG-PAS-23-014

Conclusions

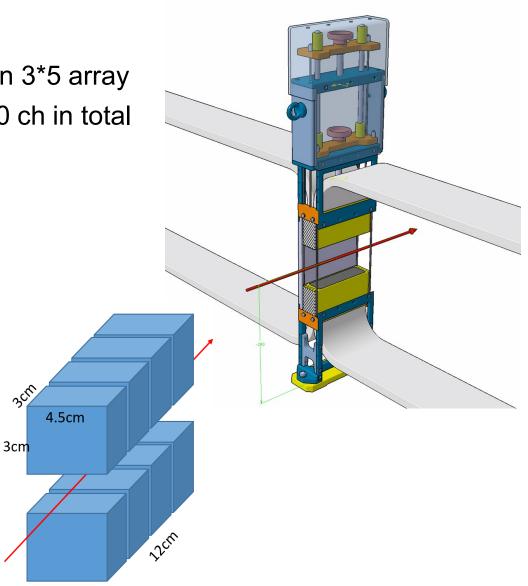

- Higgs properties and couplings probedmore broadly and precisely
 - Some recent highlighted results reported
 - Plenty of unprobed areas where deviations could occur
- On-going Run-3 will quick triplicate the data size
 - with higher energy and better experimental techniques
 - promise a new push of the current frontiers: Self-coupling, 2nd Yukawa coupling ...
 - Besides, HL-LHC upgrade on the horizon ...
- We have exciting times ahead of us!

Conclusions


- Higgs properties and couplings probedmore broadly and precisely
 - Some recent highlighted results reported
 - Plenty of unprobed areas where deviations could occur
- On-going Run-3 will quick triplicate the data size
 - with higher energy and better experimental techniques
 - promise a new push of the current frontiers: Self-coupling, 2nd Yukawa coupling ...
 - Besides, HL-LHC upgrade on the horizon ...
- We have exciting times ahead of us!

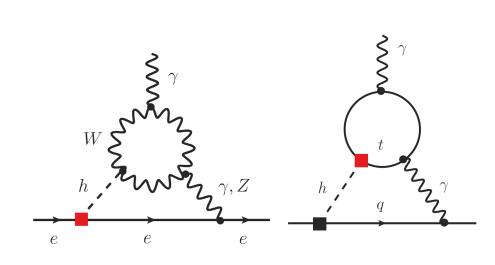
Thank you for your attention

BEPCII-BESIII forward physics



- Forward detector
 - 3.3m < z < 3.5 m, $\theta = 0$ in CMS frame
 - Fast Luminosity Monitor as baseline
- Physics potential
 - ISR physics: photon tagging
 - Di-Photon physics: electron tagging

BEPCII-BESIII forward physics


- Preliminary conceptual design: LYSO + SiPM
 - Modular design: 10*9*30mm crystal bar assembled in 3*5 array
 - Four same detector modules on each side, with ~240 ch in total
 - Timescale: ~ 2 years
- Key advantage: synchronized with BESIII TDAQ
 - High energy photon source
 - Harsh environment for novel detector R&D
- Physics potential
 - ISR, di-photon, what about others?
 - Axion? dark matter? Exotic hadron? ...
- With strong physics case, further detector upgrade is possible

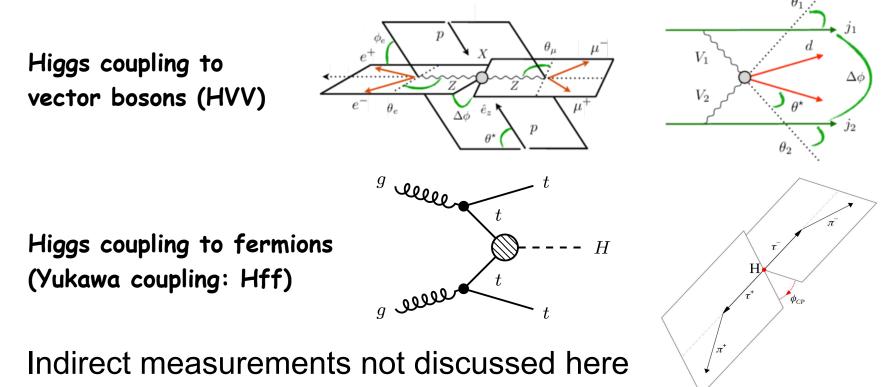
- Overview of Higgs coupling and property measurement
- Highlight the latest H->bb/cc, tautau Yukawa coupling, ttH(bb)
- Higgs CP
- Higgs self coupling:
 - Highlight combination, multilepton, etc
- BSM Higgs: ttbar,
 - Ttbar puzzle, quantum business
- Higgs and flavor sector
- Higgs potential and EWPT
- Higgs rare decay: long lived, etc.
- BSM Higgs

Indirect constraint

 Low energy experiments, e.g. electron EDM, can constrain the Higgs CP indirectly

$$\mathcal{L} \supset -\frac{y_f}{\sqrt{2}} \left(\kappa_f \, \bar{f}f + i \kappa_f \, \bar{f}\gamma_5 f \right) h$$

ACME collaboration: **eEDM<1.1×10⁻²⁹ e·cm** $|\tilde{\kappa}_e| \lesssim 1.7 \times 10^{-2}$ $|\tilde{\kappa}_t| \lesssim 1.0 \times 10^{-2}$


- But, very model dependent
 - Gauge-dependent contributions, UV-divergent diagrams, etc.

CP violation in Higgs sector

• General methodology:

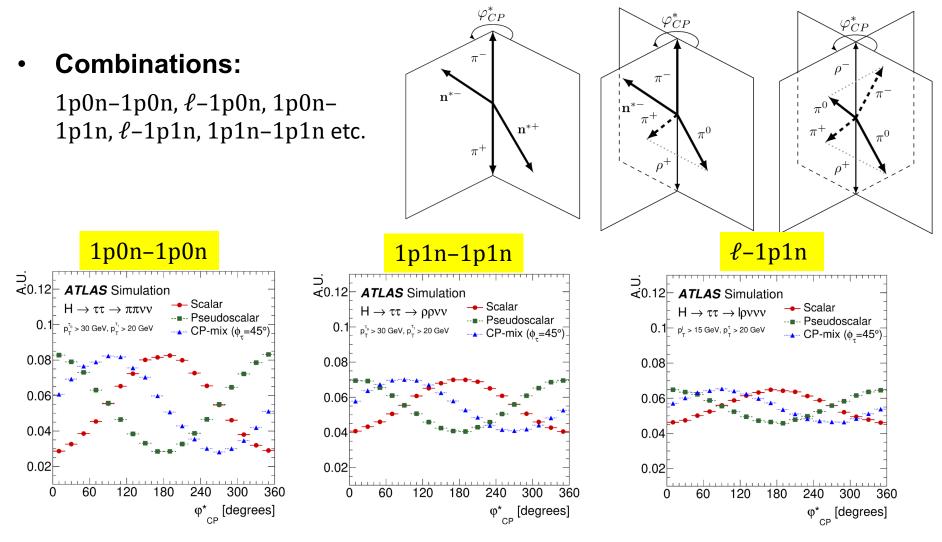
lacksquare

• using event topology to build some CP sensitive angle

• e.g. ggf loop, cross section, etc

Study HVV CP in VBF production

• HVV vertex in VBF Higgs production

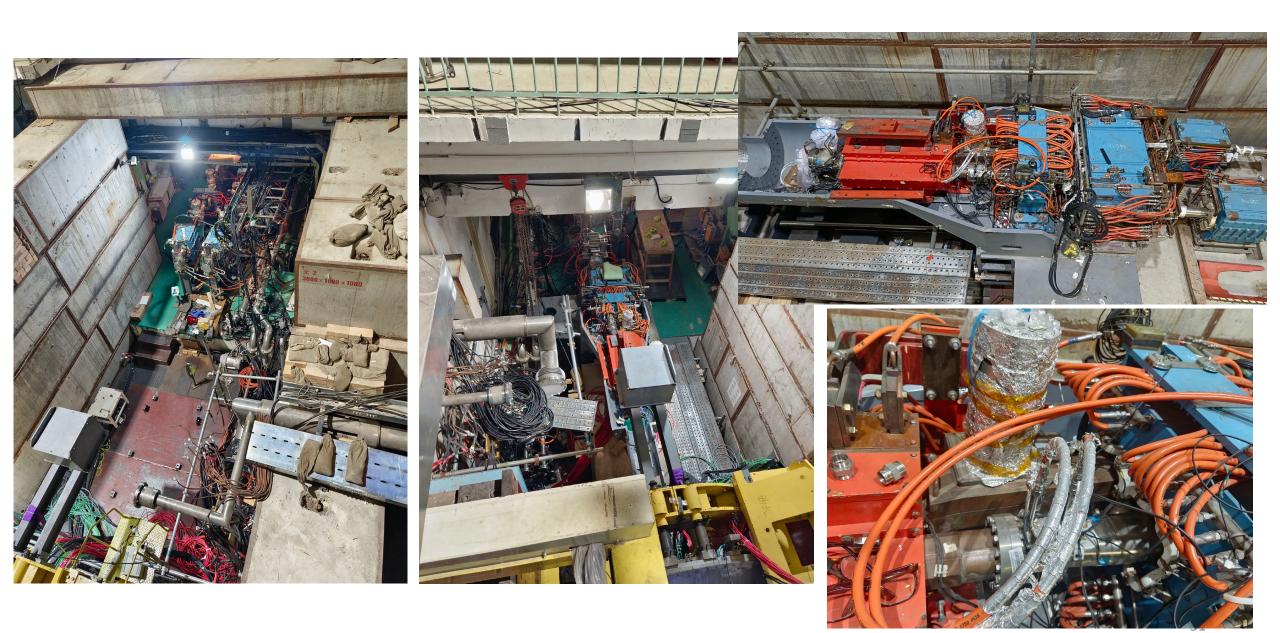


- Independent from Higgs decay: here, use $H \rightarrow \gamma \gamma$ (SM Br)
- Interpretation with two EFT bases: Warsaw and HISZ


Warsaw:
$$\mathcal{L}_{\mathrm{SMEFT}}^{\mathrm{CP-odd}} \supset \frac{c_{H\tilde{W}}}{\Lambda^2} H^{\dagger} H \tilde{W}_{\mu\nu}^I W^{\mu\nu I} + \frac{c_{H\tilde{B}}}{\Lambda^2} H^{\dagger} H \tilde{B}_{\mu\nu}^A B^{\mu\nu} + \frac{c_{H\tilde{W}B}}{\Lambda^2} H^{\dagger} \sigma^I H \tilde{W}_{\mu\nu}^I B^{\mu\nu}$$

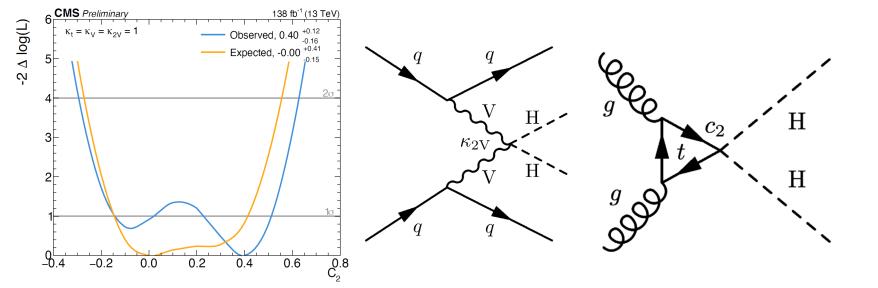
CP sensitive observable

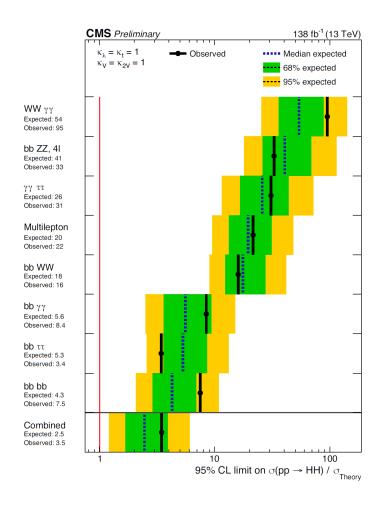
• ϕ^*_{CP} : angle between two tau decay planes, sensitive to ϕ_{τ}


CP structure of $H \rightarrow \tau \tau$ coupling

- Observed (expected) $\phi_{\tau} \approx 9^{\circ} \pm 16^{\circ}$ ($0^{\circ} \pm 28^{\circ}$) at the 68% CL
 - Results compatible with SM expectation within uncertainties
 - Excluded pure CP-odd state at 3.4σ significance

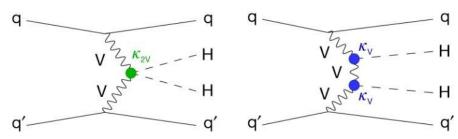
Study HVV CP in H→ZZ decay

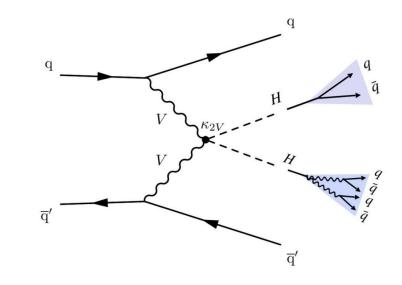

- Parameterize in terms of cross section fractions, f_{ai}
- For the V=W,Z, $f_{ai} = \frac{|a_i|^2 \sigma_i}{|a_1|^2 \sigma_1 + |a_2|^2 \sigma_2 + |a_3|^2 \sigma_3 + |\kappa_1|^2 \sigma_{\Lambda 1} + |\kappa_1^{Z\gamma}|^2 \sigma_{\Lambda 1}^{Z\gamma}} \operatorname{sgn}\left(\frac{a_i}{a_1}\right)$
- Four fractions: f_{a2} , f_{a3} , $f_{\Lambda 1}$, and $f_{\Lambda 1}^{Z\gamma}$



- Sensitivity to from VBF and VHH categories
- Obs. (Exp.) limit on cross-section of 79 (91) times the SM

• 95% CL limit on is set between 0.62 and 1.42 (expected 0.69 and 1.35) excluded by > 5σ !


We also provide 2D scans of parameters and interpretation in "Higgs Effective Field Theory" (HEFT) framework [*,**] (C2 coefficient)


HHVV couplings - from HH

> HH also sensitive to other couplings, notably HHVV (κ_{2V})

- > In SM (κ_{2V} =1): cancellation
 - BSM: potential enhancement of VBF HH (especially at high m_{HH})
- Current best constraint by CMS [Nature 607 (2022) 60]
 - 0.67< κ_{2V} <1.38 @95% CL; κ_{2V} =0 excluded with > 6 σ
 - VBF HH combination; dominated by boosted 4b channel.
- Similar result obtained by ATLAS
 - [PRL 133 (2024) 101801]

- CMS new final state: [HIG-23-012]
 - all-hadronic bbVV boosted topology + new VV→4q tagging

- -0.04 < *κ*2V < 2.05 @95% CL
- $(0.05 < \kappa 2V < 1.98 \text{ exp.})$
- κ_{2V} =0 excluded with 1.1(0.9) σ