

Study of B_c^+ physics at LHCb

俞洁晟 (湖南大学)

第29届 LHC Mini-Workshop 2024年12月13-16日 福州 福州大学

> Introduction

Recent results of B⁺_c study

 $\Box b$ quark decays $\Box c$ quark decays

Summary and outlook

■Search for annihilation decays and CPV

B_c^+ physics

> Unique state that contains two heavy quarks of different flavors

Only decay through weak interaction

Rich decay modes

- *b* quark decay ~20% *c* quark decay ~70%
- □ Annihilation decay ~10%

Precise measurements of mass, lifetime, branching fractions can provide information to test theoretical models

LHCb data samples

> Luminosity levelling $L \sim 3 \times 10^{32} \text{ cm}^{-2} \text{s}^{-1}$

➢ Run-I: 3 fb⁻¹, Run-II: 6 fb⁻¹, Run-III: 14 fb⁻¹

	All	b	hadrons:	B ⁰ , <i>I</i>	B [±] ,	B_{s}^{0} ,	B_c^{\pm}	
--	-----	---	----------	----------------------------------	-------------------------	---------------	-------------	--

LHCb: $\sigma(pp \rightarrow B_c^+)_{incl} \approx 0.3 \ \mu b$

	B ⁰	B ⁺	$B_{\rm s}^0$	b baryons (Λ_b)	B_c^+
Fraction(%)	40	40	10	10	0.1
Component	$\overline{b}d$	Бu	$\overline{b}s$	bqq	Бc

B⁺_c studies at LHCb

	$M(B_c^+ \to J/\psi \pi^+)$	$M(B_c^+ \to J/\psi \pi^+ \pi^- \pi^+)$
Mass	$M(B_c^+ \to J/\psi D_s^+)$	$M(B_c^+ \to J/\psi D^{(*)}K^{(*)})$
	$M(B_c^+ \to J/\psi p\bar{p}\pi^+)$	$M(B_c^+ \to B_s^0 \pi^+)$
Production	$\frac{\sigma(B_c^+)}{\sigma(B_c^+)} \frac{\mathcal{B}(B_c^+ \to J/\psi\pi^+)}{\mathcal{B}(B_c^+ \to J/\psiK^+)}$	$\frac{\sigma(B_c^+)}{\sigma(B_c^0)}\mathcal{B}(B_c^+\to B_s^0\pi^+)$
	$\frac{\partial(D)}{\partial(D)} \frac{\partial(D)}{\partial(D)} = \frac{\partial(D)}{\partial(D)} \frac{\partial(D)}{\partial(D)$	$O(D_S)$
Lifetime	$\tau(B_c^+ \to J/\psi \mu^+ \nu_\mu X)$	$\tau(B_c^+ \to J/\psi\pi^+)$
	$B_c^+ \rightarrow J/\psi \pi^+ \pi^- \pi^+$	$B_c^+ \to \psi(2S)\pi^+\pi^-\pi^+$
	$\mathcal{B}(B_c^+ \to J/\psi K^+)$	$B_c^+ \to (\psi(2S) \to J/\psi\pi^+\pi^-)\pi^+$
	$\mathcal{B}(B_c^+ \to \psi(2S)\pi^+)$	$B_c^+ \to (\psi(2S) \to J/\psi\pi^+\pi^-)\pi^+\pi^-\pi^+$
5	$B_c^+ \to J/\psi K^+ K^- \pi^+$	$B_c^+ \rightarrow \psi(2S)K^+K^-\pi^+$ (evidence)
Decays	$B_c^+ \rightarrow J/\psi 3\pi^+ 2\pi^-$	$B_c^+ \to J/\psi K^+ K^- \pi^+ \pi^- \pi^+$
	$\mathcal{B}(B_c^+ \to J/\psi\pi^+)/\mathcal{B}(B_c^+ \to J/\psi\mu^+\nu_\mu)$	$B_c^+ \rightarrow J/\psi 4\pi^+ 3\pi^-$ (evidence)
	$B_c^+ \rightarrow p\bar{p}\pi^+$ (upper limit)	$B_c^+ \to B_s^0 \pi^+$
	$B_c^+ \to K^+ K^- \pi^+$	$B_c^+ \to \chi_{cj} \pi^+$
	$B_c^{\pm} \rightarrow D^0 \pi^{\pm}$	$B_c^{(*)+}(2S) \to B_c^+ \pi^+ \pi^-$

b quark decays

 $B_c^+ \to [c\bar{c}]X$

$B_{\rm c}^+ \rightarrow J/\psi \pi^+ \pi^0$ with Run-I and Run-II data

- $> B_c^+ \rightarrow J/\psi \pi^+ \pi^0$ has not yet been observed
- $\gg B_c^+ \to J/\psi\pi^+ \text{as a normalization mode}$ $\mathcal{R} \equiv \frac{\mathcal{B}(B_c^+ \to J/\psi\pi^+\pi^0)}{\mathcal{B}(B_c^+ \to J/\psi\pi^+)} \qquad B_c^+$

> In the SM, theoretical prediction \mathcal{R} :(2.5~5.7)

$$\succ$$
 B⁺ → J/ψK^{*+}(→ K⁺π⁰) as a control mode

detector resolution

mass bias

Results of $B_c^+ \rightarrow J/\psi \pi^+ \pi^0$

Chang & Chen	1992
Liu & Chao	1997
Colangelo & De Fazio	1999
Abd El-Hadi, Muñoz & Vary	1999
Kiselev, Kovalsky & Likhoded	2000
Ebert, Faustov & Galkin	2003
Ivanov, Körner & Santorelli	2006
Hernández, Nieves & Verde-Velasco	2006
Wang, Shen & Lu	2007
Likhoded & Luchinsky	2009
Likhoded & Luchinsky	2009
Likhoded & Luchinsky	2009
Qiao et al.	2012
Naimuddin et al.	2012
Rui & Zou	2014
Issadykov & Ivanov	2018
Cheng et al.	2021
Zhang	2023
Liu	2023

JHEP04 (2024) 151

6

$B_{\rm c}^+ \rightarrow J/\psi(\psi(2S))h^+h^-h^+$

- > Only two $B_c^+ \rightarrow \psi 3h$ decay mode were observed
- $> B_c^+ \rightarrow J/\psi \pi^+$ as a normalization mode

$$\mathcal{R} \equiv \frac{\mathcal{B}(B_c^+ \to \psi 3h)}{\mathcal{B}(B_c^+ \to J/\psi \pi^+)}$$

> Theoretical prediction $\mathcal{R}(J/\psi\pi^+\pi^-\pi^+)$: (1.5~2.3)

 $> \mathcal{R}(J/\psi\pi^+\pi^-\pi^+) = 2.41 \pm 0.30 \pm 0.33$

- Prefers the latter predictions
- > Theoretical prediction $\mathcal{R}(J/\psi K^+K^-\pi^+)$: (0.49 and 0.47)
- $\gg \mathcal{R}(J/\psi K^+ K^- \pi^+) = 0.53 \pm 0.10 \pm 0.05$

$B_c^+ \rightarrow J/\psi(\psi(2S))h^+h^-h^+$ with Run-I and Run-II data

$\mathcal{R}^{\psi(2S)K^+K^-\pi}_{\psi(2S)\pi^+\pi^-\pi^+}$	$^{+}0.37 \pm 0.15 \pm 0.01$	0.16	BLL [27,28]
$\mathcal{R}^{\mathrm{J/\psiK^+\pi^-\pi^+}}_{\mathrm{J/\psiK^+K^-\pi^+}}$	$0.35 \pm 0.06 \pm 0.01$	0.37	BLL [27]
$\mathcal{R}^{J\!/\!\psiK^+\pi^-\pi^+}_{J\!/\!\psi\pi^+\pi^-\pi^+}$	$(6.4\pm1.0\pm0.2)\times10^{-2}$	7.7×10^{-2}	BLL [27]
$\mathcal{R}^{J\!\!/\psiK^+K^-\pi^+}_{J\!\!/\psi\pi^+\pi^-\pi^+}$	$0.185 \pm 0.013 \pm 0.006$	0.21	BLL [27, 28]
$\mathcal{R}^{\psi(2S)\pi^+}_{J\!/\!\psiK^+K^-\pi^+}$	$0.19 \pm 0.03 \pm 0.01$	0.18 ± 0.04	LHCb [6,11]
$\mathcal{R}^{\psi(2S)\pi^+}_{J\!\!\!/\psi\pi^+\pi^-\pi^+}$	$(3.5\pm 0.6\pm 0.2)\times 10^{-2}$	$(3.9\pm 0.9)\times 10^{-2}$	LHCb [1,11]
$\mathcal{R}^{J\!\!/\psiK^+K^-\pi^+}_{J\!\!/\psi\pi^+\pi^-\pi^+}$	$0.185 \pm 0.013 \pm 0.006$	0.22 ± 0.06	LHCb [1,6]
	JHEP01(2022)065		

- Agree with BLL model based on QCD factorisation
- Consistent with Run I result

	Value $[10^{-2}]$	Reference
$\mathcal{R}^{\mathrm{J/\psiK^+K^-K^+}}_{\mathrm{J/\psiK^+K^-\pi^+}}$	$7.0 \pm 1.8 \pm 0.2$	This paper
$\mathcal{R}^{\mathrm{J/\psiK^+\pi^-\pi^+}}_{\mathrm{J/\psi\pi^+\pi^-\pi^+}}$	$6.4 \pm 1.0 \pm 0.2$	This paper
$\frac{\mathcal{B}(\mathrm{B}_{\mathrm{c}}^{+} \rightarrow \mathrm{J}\!/\!\psi\mathrm{K}^{+})}{\mathcal{B}(\mathrm{B}_{\mathrm{c}}^{+} \rightarrow \mathrm{J}\!/\!\psi\pi^{+})}$	7.9 ± 0.8	[14]
$\frac{\mathcal{B}(\mathrm{B}^+ \to \overline{\mathrm{D}}{}^0\mathrm{K}^+ \pi^- \pi^+)}{\mathcal{B}(\mathrm{B}^+ \to \overline{\mathrm{D}}{}^0\pi^+ \pi^- \pi^+)}$	9.3 ± 5.1	[51, 69]
$\frac{\mathcal{B}(\mathrm{B}^{0}\to\mathrm{D}^{-}\mathrm{K}^{+}\pi^{-}\pi^{+})}{\mathcal{B}(\mathrm{B}^{0}\to\mathrm{D}^{-}\pi^{+}\pi^{-}\pi^{+})}$	5.8 ± 1.5	[51, 69]
$\frac{\mathcal{B}(\mathrm{B}^{0}\to\mathrm{D}^{*-}\mathrm{K}^{+}\pi^{-}\pi^{+})}{\mathcal{B}(\mathrm{B}^{0}\to\mathrm{D}^{*-}\pi^{+}\pi^{-}\pi^{+})}$	6.5 ± 0.6	[51, 70]
$\frac{\mathcal{B}(B^0_s \to D^s K^+ \pi^- \pi^+)}{\mathcal{B}(B^0_s \to D^s \pi^+ \pi^- \pi^+)}$	5.2 ± 1.3	[51, 71]

Agree with the ratios of branching fraction for the multibody decays of B⁺, B⁰ and B⁰_s

$B_{c}^{+} \rightarrow J/\psi(\psi(2S))nh$ with Run-I and Run-II data

- Agree with BLL model based on QCD factorization (backup)
- $\succ \mathcal{R}_{J/\psi\pi^{+}\pi^{-}\pi^{+}}^{J/\psiK^{+}K^{-}\pi^{+}} = (18.5 \pm 1.3 \pm 0.6) \times 10^{-2} < \mathcal{R}_{J/\psi3\pi^{+}2\pi^{-}}^{J/\psiK^{+}K^{-}\pi^{+}\pi^{-}\pi^{+}}$

c quark decays

- \succ B⁺_c → B⁰_sπ⁺ was first observed by LHCb with Run I data
- A wide range of predictions $\mathcal{B}(B_c^+ → B_s^0 \pi^+)$: (16.4% ~2.5%)
- \succ B⁰_s → D⁺_sπ⁺ and B⁰_s → J/ψφ as normalization mode

$$R \equiv \frac{\sigma(B_c^+)}{\sigma(B_s^0)} \times \mathcal{B}(B_c^+ \to B_s^0 \pi^+) = (2.37 \pm 0.31 \pm 0.11^{+0.17}_{-0.13}) \times 10^{-3}$$

 $\geq \mathcal{B}(B_c^+ \to B_s^0 \pi^+) \approx 10\%$

Study of $B_c^+ \rightarrow B_s^0 \pi^+$ with Run II data

> B_c^+ → $J/\psi\pi^+$ as a normalization mode

$$\succ \mathcal{R} \equiv \frac{\mathcal{B}(B_c^+ \to B_s^0 \pi^+)}{\mathcal{B}(B_c^+ \to J/\psi \pi^+)} = 91 \pm 10(\text{stat}) \pm 8(\text{syst}) \pm 3(\mathcal{B})$$

$$> B(B_c^+ → B_s^0 \pi^+) = (8.3 \pm 0.7 (\text{stat}) \pm 0.3 (\text{syst}) \pm 2.2 (B))\%$$

- Consistent with Run I result
- > The largest branching fraction of B_c^+

$b \rightarrow s l^+ l^-$ decays

$> b \rightarrow sl^+l^-$ decays described by effective Hamiltonian

$$H = -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \sum_i C_i O_i + \frac{K}{\Lambda_{NP}^2} O_j^{(6)}$$

New physics can affect Wilson coefficients C_i or add new operators O_j

Sensitivity to Wilson coefficients

Wilson Coefficients: Ci

- → Perturbative, short distance physics
- → Describes heavy SM+NP effects

Operators: O_i

- → Non-perturbative, long distance physics
- → Strong interactions, difficult to calculate

7: photon penguin; 9,10: EW penguin; S,P: (pseudo-) scalar penguin

> Theoretically clean probes of NP

- Pure leptonic decays
- **\square** Ratio between $e/\mu/\tau$
- Special angular observables
- Differential BF

Search for $B^{*0}_{(s)} \rightarrow \mu^+ \mu^-$ in $B^+_c \rightarrow \pi^+ \mu^+ \mu^-$

 $> B_{(s)}^{*0} \rightarrow \mu^+ \mu^-$ are highly suppressed in

- (s) provide the might y supplies see in the might y supplies set in the m Could be enhanced by New Physics
- > Prompt $B_{(s)}^{*0}$ have large background from pp interactions
- $\gg B_c^+ \rightarrow J/\psi(\rightarrow \mu^+\mu^-)\pi^+$ as

normalization channel

$$\begin{aligned} \mathcal{R}_{B_{(s)}^{*0}(\mu^{+}\mu^{-})\pi^{+}/J/\psi\pi^{+}} &\equiv \frac{\mathcal{B}(B_{c}^{+} \to B_{(s)}^{*0}(\mu^{+}\mu^{-})\pi^{+})}{\mathcal{B}(B_{c}^{+} \to J/\psi\pi^{+})} \\ &= \frac{N_{B_{(s)}^{*0}\pi^{+}}}{N_{J/\psi\pi^{+}}} \cdot \frac{\varepsilon_{J/\psi\pi^{+}}}{\varepsilon_{B_{(s)}^{*0}\pi^{+}}} \cdot \mathcal{B}(J/\psi \to \mu^{+}\mu^{-}) \\ &= \alpha_{B_{(s)}^{*0}\pi^{+}}^{\text{SES}} \cdot N_{B_{(s)}^{*0}\pi^{+}} \,, \end{aligned}$$

Search for
$$B^{*0}_{(s)} \rightarrow \mu^+ \mu^-$$
 in $B^+_c \rightarrow \pi^+ \mu^+ \mu^-$

First measurement, no significant signal and upper limits on the branching ratio

$$\mathcal{R}_{B^{*0}(\mu^+\mu^-)\pi^+/J/\psi\pi^+} < 3.8 \times 10^{-5} , \mathcal{R}_{B^{*0}_s(\mu^+\mu^-)\pi^+/J/\psi\pi^+} < 5.0 \times 10^{-5} ,$$

Arxiv:2409.17209v1

Summary and Outlook

>Many results on B_c^+ mesons physics by LHCb

- **D** *b* quark decays: $B_c^+ \rightarrow [c\bar{c}]X$
- \Box c quark decays: $\mathcal{B}(B_c^+ \rightarrow B_s^0 \pi^+) \sim 10\%$

D Mass: $6274.47 \pm 0.27 \pm 0.17 \ MeV/c^2$

> Opportunities with Run-III (14 fb⁻¹)

\square Search for annihilation decay: $B_c^+ \rightarrow 3h$

CPV?

- □ Search for more *c* quark decays: $B_c^+ \rightarrow B^+X$, B^0X ?
- □ Form factor never be measured
- □ Lepton universality

Outlook of $B_c^+ \rightarrow h^+ h^- h^+$

> In the SM, theoretical prediction B_c^+ annihilation decays :10⁻⁸~10⁻⁶)

Any significant enhancement could indicate the particles beyond the SM (like H⁺)

- $\succ \text{ Decay modes for } B_c^+ \to K^+ K^- \pi^+$ $1. \quad \overline{b} \to \overline{q} : B_c^+ \to K^+ D^0 (\to K^- \pi^+)$ $2. \quad \overline{c} \to \overline{q} : B_c^+ \to \pi^+ B_q^0 (\to K^- K^+)$ $3. \quad \overline{b} \to \overline{c} : B_c^+ \to \pi^+ [c\overline{c}] (\to K^- K^+)$
 - 4. $\overline{b}c$ annihilation: NR

Outlook of CPV

No.	Final state	$\Gamma(B_c^+ \rightarrow f) \text{ (GeV)}$	$\overline{\Gamma(B_c^- \to f)}$ (GeV)	\mathcal{A}_{CP}
1	ψD^{*+}	6.65×10^{-16}	6.53×10^{-16}	0.00954
2	$\eta_c D^{*+}$	9.42×10^{-17}	9.09×10^{-17}	0.0179
3	ψD^+	2.91×10^{-17}	2.89×10^{-17}	0.00383
4	$\eta_c D^+$	4.07×10^{-16}	3.89×10^{-16}	0.0226
5	ψD_s^{*+}	1.76×10^{-14}	1.76×10^{-14}	-0.000480
6	$\eta_c D_s^{*+}$	2.20×10^{-15}	2.21×10^{-15}	-0.000902
7	ψD_s^+	8.54×10^{-16}	8.55×10^{-16}	-0.000186
8	$\eta_c D_s^+$	9.58×10^{-15}	9.60×10^{-15}	-0.00118
9	$D^{*0} ho^+$	8.34×10^{-18}	8.99×10^{-18}	-0.0379
10	$D^0 ho^+$	8.38×10^{-18}	9.04×10^{-18}	-0.0379
11	$D^{*0}\pi^+$	2.80×10^{-18}	2.88×10^{-18}	-0.0154
12	$D^0\pi^+$	3.11×10^{-18}	3.54×10^{-18}	-0.0645
13	$D^{*0}K^{*+}$	5.81×10^{-18}	5.13×10^{-18}	0.0622
14	$D^{0}K^{*+}$	5.35×10^{-18}	4.72×10^{-18}	0.0622
15	$D^{*0}K^{+}$	7.71×10^{-19}	6.46×10^{-19}	0.0879
16	D^0K^+	6.76×10^{-18}	6.16×10^{-18}	0.0463
17	$D^{st +} ho^0$	1.94×10^{-18}	1.83×10^{-18}	0.0302
18	$D^{*+}\pi^0$	9.83×10^{-20}	9.46×10^{-20}	0.0210
19	$D^+ ho^0$	5.90×10^{-19}	5.56×10^{-19}	0.0302
20	$D^+\pi^0$	3.12×10^{-19}	3.01×10^{-19}	0.0185
21	$D^{*+}K^{*0}$	4.48×10^{-18}	4.41×10^{-18}	0.00822
22	$D^{+}K^{*0}$	4.22×10^{-18}	4.15×10^{-18}	0.00822
23	$D^{*+}K^{0}$	4.10×10^{-19}	4.03×10^{-19}	0.00822
24	DK^0	7.22×10^{-18}	7.11×10^{-18}	0.00822
25	$D_s^{*+}\phi$	5.68×10^{-18}	5.58×10^{-18}	0.00822
26	$D_s^+\phi$	2.30×10^{-18}	2.26×10^{-18}	0.00822
27	$D_s^{*+}\overline{K^*}^0$	2.88×10^{-19}	3.76×10^{-19}	-0.133
28	$D_s^{*+}\overline{K^0}$	2.69×10^{-20}	3.52×10^{-20}	-0.133
29	$D_s^+ \overline{K^*}{}^0$	1.32×10^{-19}	1.72×10^{-19}	-0.133
30	$D_s^+ \overline{K^0}$	2.40×10^{-19}	3.14×10^{-19}	-0.133

Mode
Prediction: A_{cp} Lum
(fb⁻¹)N
Precision of
 A_{cp} Lum
(fb⁻¹)

		A_{cp}		A _{cp}
$B_c^+ ightarrow J/\psi D^+ A_{cp} = 0.4\%$	9.0	x	14.0	х
$B_c^+ ightarrow J/\psi D_s^+ A_{cp} = 0.02\%$	9.0	$\begin{array}{c} 1135\pm49\\ {\sim}5\% \end{array}$	14.0	~2000 ~ <mark>3</mark> %
$B_c^+ \rightarrow D^0 K^+$ $A_{cp} = 4.6\%$	3.0	20 ± 5 x	9.0 14.0	~100 15~20% 200~300 10%
$B_c^+ \rightarrow D_s^+ K^{*0}$ $A_{cp} = 13.3\%$	9.0	x	14.0	х

Ν

Precision of

Resonance structure of $B_c^+ \rightarrow J/\psi(\psi(2S))h^+h^-h^+$

Resonance structure of $B_c^+ \rightarrow J/\psi(\psi(2S))nh$

