Improved constraints on the Higgs potential

Jian Wang (王健) Shandong University

> Fuzhou Dec 14, 2024

Discovery in 2012

How precise is our understanding?

ATLAS	⊢ ⊷⊣ Total	Stat. only	
Run 1: \sqrt{s} = 7-8 TeV, 25 fb ⁻¹ , Run 2: \sqrt{s}	$\bar{s} = 13 \text{ TeV}, 140 \text{ fb}^{-1}$		
· · · · ·	_		Total (Stat. only)
Run 1 $H \rightarrow \gamma \gamma$	H H	 -	126.02 \pm 0.51 (\pm 0.43) GeV
Run 1 $H \rightarrow 4\ell$			124.51 \pm 0.52 (\pm 0.52) GeV
Run 2 $H \rightarrow \gamma \gamma$	II		125.17 \pm 0.14 (\pm 0.11) GeV
Run 2 $H \rightarrow 4\ell$			124.99 \pm 0.19 (\pm 0.18) GeV
Run 1+2 $H \rightarrow \gamma \gamma$	l <mark>-e-</mark> l		125.22 \pm 0.14 (\pm 0.11) GeV
Run 1+2 $H \rightarrow 4\ell$	——		124.94 ± 0.18 (± 0.17) GeV
Run 1 Combined	-	<mark></mark> 1	125.38 \pm 0.41 (\pm 0.37) GeV
Run 2 Combined	I <mark></mark> I		125.10 \pm 0.11 (\pm 0.09) GeV
Run 1+2 Combined	1 1		125.11 \pm 0.11 (\pm 0.09) GeV
123 124	125	126	127 128
	<i>т</i> н [Ge	eV]	

$$\frac{m_t}{m_H} = \frac{m_H}{M_Z} \approx \sqrt{2} \pm 0.04$$

So far, the H(125) properties are consistent with the SM expectation!

Its couplings with SM particles are proportional to their masses; <u>Higgs mechanism</u>

existence of a "fifth force" different from gravity

Nature 607(2022)52

Higgs self-coupling in the SM

$$V(\phi) = -\mu^2 \phi^{\dagger} \phi + \lambda (\phi^{\dagger} \phi)^2$$
$$\phi = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v+h \end{pmatrix}$$
$$V(h) = \frac{1}{2} m_h^2 h^2 + \sqrt{\frac{\lambda}{2}} m_H h^3 + \frac{1}{4} \lambda h^4$$
$$\lambda = m_H^2 / 2v^2$$

In some new physics models, the trilinear Higgs self-coupling may change by O(100)%, while the couplings with gauge bosons and fermions are still in agreement with SM.

S.Kanemura, et al, PLB558,157

We need to measure the trilinear self coupling directly.

Higgs pair production at the LHC

[1] Glover, van der Bij 88; [2] Dawson, Dittmaier, Spira 98; [3] Shao, Li, Li, Wang 13; [4] Grigo, Hoff, Melnikov, Steinhauser 13; [5] de Florian, Mazzitelli 13; [6] Grigo, Melnikov, Steinhauser 14; [7] Grigo, Hoff 14; [8] Maltoni, Vryonidou, Zaro 14; [9] Grigo, Hoff, Steinhauser 15; [10] de Florian, Grazzini, Hanga, Kallweit, Lindert, Maierhöfer, Mazzitelli, Rathlev 16; [11] Borowka, Greiner, Heinrich, SPJ, Kerner, Schlenk, Schubert, Zirke 16; [12] Borowka, Greiner, Heinrich, SPJ, Kerner, Schlenk, Zirke 16; [13] Ferrera, Pires 16; [14] Heinrich, SPJ, Kerner, Luisoni, Vryonidou 17; [15] SPJ, Kuttimalai 17; [16] Gröber, Maier, Rauh 17; [17] Baglio, Campanario, Glaus, Mühlleitner, Spira, Streicher 18; [18] Grazzini, Heinrich, SPJ, Kallweit, Kerner, Lindert, Mazzitelli 18; [19] de Florian, Mazzitelli 18; [20] Bonciani, Degrassi, Giardino, Gröber 18; [21] Davies, Mishima, Steinhauser, Wellmann 18, 18; [22] Mishima 18; [23] Gröber, Maier, Rauh 19; [24] Davies, Heinrich, SPJ, Kerner, Mishima, Steinhauser 19, [26] Chen, Li, Shao, Wang 19, 19; [27] Davies, Herren, Mishima, Steinhauser 19, 21; [28] Baglio, Campanario, Glaus, Mühlleitner, Ronca, Spira 21; [29] Bellafronte, Degrassi, Giardino, Gröber, Vitti 22; [30] Davies, Mishima, Schönwald, Steinhauser 23; [32] Davies, Schönwald, Steinhauser 23; [33] Davies, Schönwald, Steinhauser, Zhang 22; [31] Davies, Mishima, Schönwald, Steinhauser 23; [32] Davies, Schönwald, Steinhauser, Vitti 24; [38] Heinrich, SPJ, Kerner, Stone, Vestrer [39] Li, Si, Wang, Zhao 24

taken from Spira's talk at Higgs 2024

$pp \rightarrow HH$ as a function of κ

 $\sigma_{HH} = A + B\kappa + C\kappa^2$

computation	A [fb]	A/A(LO)	B [fb]	B/B(LO)	C [fb]	C/C(LO)
LO m_t fin	35.0		-23.0		4.73	
NLO m_t fin	62.6	1.79	-44.4	1.93	9.64	2.04
NLO m_t fin × NNLO SM FTApprox	70.0	2.00	-49.6	2.16	10.8	2.28
NNLO + NNLL $m_t \rightarrow \infty \times$						
NNLO+NLL SM (partial m_t fin)	71.3	2.04	-47.7	2.08	9.93	2.10

A more realistic function form

Non-trivial task

Input parameters of conventional EW calculations:

 e, m_H, m_t, m_W, m_Z

If one takes the Higgs self-coupling λ as an input, the correction would be proportional to λ .

Performing rescaling $\lambda \to \kappa \lambda$ before or after substituting $m_H^2 = 2\lambda v^2$ gives different results.

In the SM, the Lagrangian for the Higgs sector can be written as

$$\mathcal{L}_{\rm H} = (D_{\mu}\phi_0)^{\dagger}(D^{\mu}\phi_0) + \mu_0^2(\phi_0^{\dagger}\phi_0) - \lambda_0(\phi_0^{\dagger}\phi_0)^2$$

where ϕ_0 denotes the bare Higgs doublet and D_{μ} is the covariant derivative. The relations between the bare fields and couplings, and their renormalized counterparts, are given by $\phi_0 = Z_{\phi}^{1/2} \phi$, $\mu_0^2 = Z_{\mu^2} \mu^2$, and $\lambda_0 = Z_{\lambda} \lambda$.

The EW gauge symmetry is spontaneously broken once the Higgs field develops a non-vanishing vacuum expectation value *v*. Taking the unitary gauge, we write the Higgs field as

$$\phi = \frac{1}{\sqrt{2}} \left(0, \, Z_v v + H \right)^T$$

Our strategy is equivalent to the application of HEFT in Higgs boson pair production.

The renormalized Lagrangian in the κ framework after EW gauge symmetry breaking:

$$\mathscr{L}_{\mathrm{H}}^{\kappa} = \frac{1}{2} Z_{\phi} (\partial_{\mu} H)^{2} - \left(-\frac{1}{2} Z_{\mu^{2}} Z_{\phi} Z_{\nu}^{2} \mu^{2} v^{2} + \frac{1}{4} Z_{\lambda} Z_{\phi}^{2} Z_{\nu}^{4} \lambda v^{4} \right) - (Z_{\lambda} Z_{\phi}^{2} Z_{\nu}^{3} \lambda v^{3} - Z_{\mu^{2}} Z_{\phi} Z_{\nu} \mu^{2} v) H$$
$$- \left(\frac{3}{2} Z_{\lambda} Z_{\phi}^{2} Z_{\nu}^{2} \lambda v^{2} - \frac{1}{2} Z_{\mu^{2}} Z_{\phi} \mu^{2} \right) H^{2} - Z_{\kappa_{3\mathrm{H}}} Z_{\lambda} Z_{\phi}^{2} Z_{\nu} \lambda_{3\mathrm{H}} v H^{3} - \frac{1}{4} Z_{\kappa_{4\mathrm{H}}} Z_{\lambda} Z_{\phi}^{2} \lambda_{4\mathrm{H}} H^{4} + \cdots$$

The linear term is

$$(\mu^2 v - \lambda v^3)H + [(\delta Z_{\mu^2} + \delta Z_{\phi} + \delta Z_{v})\mu^2 v - (\delta Z_{\lambda} + 2\delta Z_{\phi} + 3\delta Z_{v})\lambda v^3]H$$

We choose the renormalization scheme in which there is no tadpole contributions.

$$\mu^2 = \lambda v^2$$
 and $(\delta Z_{\mu^2} - \delta Z_{\lambda} - \delta Z_{\phi} - 2\delta Z_{\nu})\mu^2 v + T = 0$ with T the one-loop diagrams.

$$T = \frac{3\lambda_{3H}\nu}{16\pi^2} m_H^2 \left(\frac{1}{\epsilon} + \ln\frac{\mu_R^2}{m_H^2} + 1\right)$$

16 H.T. Li, Z.G. Si, JW, X. Zhang, D. Zhao, 2407.14716

The quadratic term is

$$\begin{aligned} &\frac{1}{2}(\partial_{\mu}H)^{2} - \mu^{2}H^{2} + \frac{1}{2}\delta Z_{\phi}(\partial_{\mu}H)^{2} - \left(\frac{3}{2}\delta Z_{\lambda} + \frac{5}{2}\delta Z_{\phi} - \frac{1}{2}\delta Z_{\mu^{2}} + 3\delta Z_{\nu}\right)\mu^{2}H^{2} \\ &\equiv \frac{1}{2}(\partial_{\mu}H)^{2} - \frac{1}{2}m_{H}^{2}H^{2} + \frac{1}{2}\delta Z_{\phi}(\partial_{\mu}H)^{2} - \frac{1}{2}(\delta Z_{m_{H}^{2}} + \delta Z_{\phi})m_{H}^{2}H^{2} \end{aligned}$$

We choose the on-shell renormalization scheme.

$$\delta Z_{m_{H}^{2}} = \frac{3\lambda_{4H}}{16\pi^{2}} \left(\frac{1}{\epsilon} + \ln \frac{\mu_{R}^{2}}{m_{H}^{2}} + 1 \right) + \frac{9\lambda_{3H}^{2}v^{2}}{m_{H}^{2}} \frac{1}{8\pi^{2}} \left(\frac{1}{\epsilon} + \ln \frac{\mu_{R}^{2}}{m_{H}^{2}} + 2 - \frac{\pi}{\sqrt{3}} \right)$$
$$\delta Z_{\phi} = \frac{9\lambda_{3H}^{2}v^{2}}{8\pi^{2}} \frac{\sqrt{3} - 2\pi/3}{\sqrt{3}m_{H}^{2}}$$

Since we focus on the corrections induced by the Higgs self-couplings, we can simply take $\delta Z_v + \delta Z_\phi/2 = 0$

The result of one-particle reducible diagrams and counter-terms:

$$\begin{split} \mathcal{M}_{gg \to H^* \to HH}^{\rm LO} \times & \left\{ \frac{3}{16\pi^2} \frac{1}{\epsilon} \left(-2\lambda_{4\rm H} - \lambda_{3\rm H} + 6\lambda_{3\rm H}^2 \frac{v^2}{m_H^2} \right) + \delta Z_{\kappa_{3\rm H}} \right. \\ & + \frac{3}{16\pi^2} \ln \frac{\mu_R^2}{m_H^2} \left[-2\lambda_{4\rm H} - \lambda_{3\rm H} + 6\lambda_{3\rm H}^2 \frac{v^2}{m_H^2} \right] \\ & - \frac{9\lambda_{3\rm H}^2}{8\pi^2} \frac{v^2}{s - m_H^2} \left[\beta \left(\ln \left(\frac{1 - \beta}{1 + \beta} \right) + i\pi \right) + \frac{s}{m_H^2} \left(1 - \frac{2\pi}{3\sqrt{3}} \right) + \frac{5\pi}{3\sqrt{3}} - 1 \right] \\ & + \frac{3\lambda_{3\rm H}^2}{16\pi^2} \frac{v^2}{m_H^2} (21 - 4\sqrt{3}\pi) - \frac{9\lambda_{3\rm H}^2 v^2}{4\pi^2} C_0[m_H^2, m_H^2, s, m_H^2, m_H^2, m_H^2] \\ & - \frac{3\lambda_{4\rm H}}{16\pi^2} \left[\beta \left(\ln \left(\frac{1 - \beta}{1 + \beta} \right) + i\pi \right) + 5 - \frac{2\pi}{\sqrt{3}} \right] - \frac{3\lambda_{3\rm H}}{16\pi^2} \right\}, \end{split}$$

Squared matrix elements

H.T. Li, Z.G. Si, JW, X. Zhang, D. Zhao, 2407.14716

Updated function forms

The λ dependent correction is

 $\delta\sigma_{ggF,EW}^{\kappa_{\lambda}} = (0.075\kappa_{\lambda_{3H}}^{4} - 0.158\kappa_{\lambda_{3H}}^{3} - 0.006\kappa_{\lambda_{3H}}^{2}\kappa_{\lambda_{4H}} - 0.058\kappa_{\lambda_{3H}}^{2} + 0.070\kappa_{\lambda_{3H}}\kappa_{\lambda_{4H}} - 0.149\kappa_{\lambda_{4H}})$ fb

 $\delta\sigma_{\rm VBF,EW}^{\kappa_{\lambda}} = (0.0215\kappa_{\lambda_{3H}}^4 - 0.0324\kappa_{\lambda_{3H}}^3 - 0.0019\kappa_{\lambda_{3H}}^2\kappa_{\lambda_{4H}} - 0.0043\kappa_{\lambda_{3H}}^2 + 0.0151\kappa_{\lambda_{3H}}\kappa_{\lambda_{4H}} - 0.0211\kappa_{\lambda_{4H}}) \text{ fb}$

$\left egin{array}{c} \kappa_{\lambda_{3\mathrm{H}}} & \kappa_{\lambda_{4\mathrm{H}}} \end{array} ight $	ggF		VBF				
	$\kappa_{\lambda_{ m 4H}}$	$\sigma_{ m LO}^{\kappa_\lambda}$	$\sigma_{ m NNLO-FT}^{\kappa_\lambda}$	$\delta\sigma^{\kappa_\lambda}_{ m EW}$	$\sigma_{ m LO}^{\kappa_\lambda}$	$\sigma^{\kappa_\lambda}_{ m NNNLO}$	$\delta\sigma^{\kappa_\lambda}_{ m EW}$
1	1	16.7	31.2	-0.225	1.71	1.69	-2.30×10^{-2}
3	1	8.59	18.4	1.28	3.59	3.53	$8.35 imes 10^{-1}$
6	1	67.3	161	60.6	25.1	24.6	20.7
1	3	16.7	31.2	-0.393	1.71	1.69	-3.89×10^{-2}
1	6	16.7	31.2	-0.646	1.71	1.69	-6.27×10^{-2}
3	3	8.59	18.4	1.30	3.59	3.53	$8.50 imes 10^{-1}$
6	6	67.3	161	61.0	25.1	24.6	20.7

The QCD corrections are significant in ggF, but not sensitive to κ_{3H} .

The EW corrections are 91% (82%) in ggF (VBF) for $\kappa_{3H} = 6$.

The dependence on λ_{4H} is weak.

H.T. Li, Z.G. Si, JW, X. Zhang, D. Zhao, 2407.14716

More stringent constraint

H.T. Li, Z.G. Si, JW, X. Zhang, D. Zhao, 2407.14716

Summary

The SM is a master piece in human history. It has been tested by a lot of experiments at very high precision level.

However, the Higgs sector still needs more precise comparison between theories and experiments.

Higher-order quantum corrections provide more precise estimate of the dependence on Higgs self-couplings.

Thanks a lot for your attention!