Boosting the LHC resonance search program with Sophon

Partially based on arXiv:2405.12972 [Github] [Dataset] [Model] [Colab Demo]

Congqiao Li (李聪乔), Peking University

this talk is based mainly on the work with:

Antonios Agapitos¹, Jovin Drews², Javier Duarte³, Dawei Fu¹, Leyun Gao¹, Raghav Kansal³, Gregor Kasieczka², Louis Moureaux², Huilin Qu⁴, Cristina Mantilla Suarez⁵, Qiang Li¹

1) Peking U. 2) Hamburg U. 3) UC San Diego 4) CERN 5) FNAL

29th Mini-workshop on the frontier of LHC, Fuzhou

15 December, 2024

Congqiao Li (Peking University)

29th Mini-workshop on the frontier of LHC

transformative insights!

Inspiring results from CMS to address hadronic final state

Inspiring results from CMS to address hadronic final state

Inspiring progress on identifying H→bb/cc̄ jets

CMS-PAS-BTV-22-001

(13 TeV)

ATLAS Simulation Preliminary

0.6

 \sqrt{s} = 13 TeV, Anti- $k_{\rm t}$ R=1.0 UFO jets

 $p_{\rm T} > 250 \text{ GeV}, 50 < m_{\rm I} < 200 \text{ GeV}, |\eta| < 2$

Background rejectior

 10^{3}

10²

10

 10^{0}

2.0

1.0

0.5

Top ratio

Multijet ratio

Top Multiie

Dxbb

DGN2X

Better

2 VR D^{GN2}

Transformer-based GN2X tagger: ~x3 \swarrow QCD and x2 top background rejection

0.7

0.8

0.9

 $H(b\bar{b})$ efficiency

Huge improvements in recent 5 years

Another ~x5 📈

improvement achieved

LHC data: Has the mining reached its limits?

Limit on μ_{HH}

100

LHC data: Has the mining reached its limits?

LHC data: Has the mining reached its limits?

GN2X tagger

How can we accelerate the pace?

What we possess in ATLAS and CMS

CMS: DeepAK8 and ParticleNet algorithms

JINST 15 (2020) P06005

1	Output		
	Category	Label	
		H (<mark>bb</mark>)	
	Higgs	Н (<mark>сс</mark>)	
		H (VV*→qqqq	
		top (<mark>bc</mark> q)	
its	Top	top (<mark>b</mark> qq)	
	юр	top (<mark>bc</mark>)	
		top (<mark>b</mark> q)	
	۱۸/	W (<mark>c</mark> q)	
٦l	**	W (qq)	
		Z (<mark>bb</mark>)	
	Z	Z (<mark>cc</mark>)	
ıt		Z (qq)	
	QCD	QCD (<mark>bb</mark>)	
		QCD (cc)	
		QCD (b)	
		QCD (c)	
		QCD (others)	

DeepAK8-MD, ParticleNet- CMS/ MD, and DeepDoubleX algorithms

CMS-PAS-BTV-22-001

Focus on variable-mass

resonance decays

(5 subclasses)

• X→bb, cc, qq and QCD

ATLAS

• including flat-mass $H \rightarrow bb$, cc and $t \rightarrow bqq$ samples, with QCD

GN2X Outputs

- GN2X adds a H \rightarrow cc output class in addition to the H \rightarrow bb, top and QCD classes from the previous tagger
- · A discriminant score is built using a weighted log likelihood ratio similar to what's used for small-R tagging
- GN2X also includes the same auxiliary vertexing and track ٠ origin classification tasks present in GN1/GN2

$$D_{\text{Hbb}}^{\text{GN2X}} = \ln\left(\frac{p_{\text{Hbb}}}{f_{\text{Hcc}} \cdot p_{\text{Hcc}} + f_{\text{top}} \cdot p_{\text{top}} + (1 - f_{\text{Hcc}} - f_{\text{top}}) \cdot p_{\text{QCD}}}\right)$$

ATL-PHYS-PUB-2023-021

Jackson's slides

What we possess in ATLAS and CMS

		ssee, $ss\mu\mu$, $ss\tau_{\rm h}\tau_e$, $ss\tau_{\rm h}\tau_\mu$, $ss\tau_{\rm h}\tau_{\rm h}$, ssb , ssc , sss , ssq , ssg , sse , $ss\mu$, $qqqq$, $qqgg$, $qqee$, $qq\mu\mu$, $qq\tau_{\rm h}\tau_e$, $qq\tau_{\rm h}\tau_\mu$, $qq\tau_{\rm h}\tau_{\rm h}$, $qdt_{\rm h}\tau_{\rm h}$, $gdt_{\rm h}\tau_{\rm h}$, $gdt_{$
QCD jets	161–187	bbccss, bbccs, bbccs, bbcs, bbcs, bbc, bbss, bbs, bb

ch

What we possess in ATLAS and CMS

Major types	Index range	Label names	final states in the sea
Resonant jets: $X \to 2$ prong	0-14	$bb, cc, ss, qq, bc, cs, bq, cq, sq, gg, ee, \mu\mu, \tau_{\rm h}\tau_e, \tau_{\rm h}\tau_\mu, \tau_{\rm h}\tau_{\rm h}$	
Resonant jets: $X \to 3 \text{ or } 4 \text{ prong}$	15–160	bbbb, bbcc, bbss, bbqq, bbgg, bbee, bbµµ, bb $\tau_h \tau_e$, bb $\tau_h \tau_\mu$, bb $\tau_h \tau_h$, bbb, bbc, bb ccss, ccqq, ccgg, ccee, ccµµ, cc $\tau_h \tau_e$, cc $\tau_h \tau_\mu$, cc $\tau_h \tau_h$, ccb, ccc, ccs, ccq, ccg, ssee, ssµµ, ss $\tau_h \tau_e$, ss $\tau_h \tau_\mu$, ss $\tau_h \tau_h$, ssb, ssc, sss, ssq, ssg, sse, ssµ, qqqq, qq $\tau_h \tau_\mu$, qq $\tau_h \tau_h$, qqb, qqc, qqs, qqq, qqg, qqe, qqµ, gggg, ggee, ggµµ, gg τ_μ ggc, ggs, ggq, ggg, gge, ggµ, bee, cee, see, qee, gee, bµµ, cµµ, sµµ, q $\mu_h \tau_e$, $g\tau_h \tau_e$, $b\tau_h \tau_\mu$, $c\tau_h \tau_\mu$, $s\tau_h \tau_\mu$, $q\tau_h \tau_\mu$, $g\tau_h \tau_h$, $c\tau_h \tau_h$, sth, $q\tau_h \tau_\mu$ bbcq, ccbs, ccbq, ccsq, sscq, qqbc, qqbs, qqcs, bcsq, bcs, bcq, bsq, csq, bcen qqeν, bcµν, csµν, bqµν, cqµν, sqµν, qqµν, bc $\tau_e \nu$, cs $\tau_e \nu$, bq $\tau_e \nu$, cq $\tau_e \nu$, sq bq $\tau_\mu \nu$, cq $\tau_\mu \nu$, sq $\tau_\mu \nu$, qc $\tau_\mu \nu$, bc $\tau_h \nu$, cs $\tau_h \nu$, bq $\tau_h \nu$, cq $\tau_h \nu$, sq $\tau_h \nu$, qq $\tau_h \nu$	s, bbq, bbg, bbe, bb μ , cccc, cce, cc μ , ssss, ssqq, ssgg, qqgg, qqee, qq $\mu\mu$, qq $\tau_h\tau_e$, $h\tau_e$, gg $\tau_h\tau_\mu$, gg $\tau_h\tau_h$, ggb, g $\mu\mu$, b $\tau_h\tau_e$, c $\tau_h\tau_e$, s $\tau_h\tau_e$, h, g $\tau_h\tau_h$, qqqb, qqqc, qqqs, ν , cse ν , bqe ν , cqe ν , sqe ν , $\tau_e\nu$, qq $\tau_e\nu$, bc $\tau_\mu\nu$, cs $\tau_\mu\nu$,
QCD jets	161-187	bbccss, bbccs, bbcs, bbcs, bbcs, bbc, bbss, bbs, bb	s, bc, bss, bs, b, ccss, ccs,

Sophon (智子): Signature-Oriented Pre-training for Heavy-resonant ObservatioN

	Index range	Label names
	0–14	$bb, cc, ss, qq, bc, cs, bq, cq, sq, gg, ee, \mu\mu, \tau_{\rm h}\tau_e, \tau_{\rm h}\tau_\mu, \tau_{\rm h}\tau_{\rm h}$
$X \to 2 \text{ prong}$		
Resonant jets: $X \rightarrow 3 \text{ or } 4 \text{ prong}$	15–160	bbbb, bbcc, bbss, bbqq, bbgg, bbee, bbµµ, bb $\tau_h \tau_e$, bb $\tau_h \tau_\mu$, bb $\tau_h \tau_h$, bbb, bbc, bbs, bbq, bbg, bbe, bbµ, cccc ccs, ccq, ccg, cce, ccµ, ssss, ssqq, ssgg ssee, ssµµ, ss $\tau_h \tau_e$, ss $\tau_h \tau_\mu$, ss $\tau_h \tau_h$, ssb, ssc, sss, ssq, ssg, sse, ssµ, qqqq, qqgg, qqee, qqµµ, qq $\tau_h \tau_e$, qq $\tau_h \tau_\mu$, qq $\tau_h \tau_h$, qqb, qqc, qqs, qqq, qqg, qqe, qqµ, gggg, ggee, ggµµ, gg $\tau_h \tau_e$, gg $\tau_h \tau_e$, gg $\tau_h \tau_h$, gg $\tau_h \tau_h$, gg $\tau_h \tau_e$, st $\tau_h \tau_\mu$, st $\tau_h \tau_\mu$, $\tau_h $
QCD jets	161–187	bbccss, bbccs, bbccs, bbcss, bbcs, bbcs, bbss, bbs, bb

→ Major concerns:

- Will the model achieve the best performance for each specific task?
- What can we use this model for, beyond its identification task supported by its final states?

Sophon (智子): Signature-Oriented Pre-training for Heavy-resonant ObservatioN

THREE-BODY	Index range	Label names
	0–14	$bb, cc, ss, qq, bc, cs, bq, cq, sq, gg, ee, \mu\mu, \tau_{\mathrm{h}}\tau_{e}, \tau_{\mathrm{h}}\tau_{\mu}, \tau_{\mathrm{h}}\tau_{\mathrm{h}}$
$X \to 2 \text{ prong}$		
Resonant jets: $X \rightarrow 3 \text{ or } 4 \text{ prong}$	15–160	bbbb, bbcc, bbss, bbqq, bbgg, bbee, bbµµ, bb $\tau_h \tau_e$, bb $\tau_h \tau_\mu$, bb $\tau_h \tau_h$, bbb, bbc, bbs, bbq, bbg, bbe, bbµ, cccc, ccs, ccq, ccg, cce, ccµ, ssss, ssqq, ssgg, ssee, ssµµ, ss $\tau_h \tau_e$, ss $\tau_h \tau_\mu$, ss $\tau_h \tau_h$, ssb, ssc, sss, ssq, ssg, sse, ssµ, qqqq, qqgg, qqee, qqµµ, qq $\tau_h \tau_e$, qq $\tau_h \tau_h$, qq $t_h \tau_h$, qq d_b , qq c , qq s , qq q , qq g , qq e , qq μ , gggg, ggee, ggµµ, gg $\tau_h \tau_e$, gg $\tau_h \tau_\mu$, gg $\tau_h \tau_h$, gg $t_h \tau_h$, gd $t_h \tau_e$, the state sta
QCD jets	161–187	bbccss, bbccs, bbcs, bbcs, bbcs, bbcs, bbs, bb

➔ Major concerns:

Yes, it does. The Particle Transformer can support each task to reach its optimal performance

We can regard it as a true **"based model"** and fine-tune it for wider ranges of downstream tasks

- Will the model achieve the best performance for each specific task?
- What can we use this model for, beyond its identification task supported by its final states?

Sophon: performance benchmark

arXiv:2405.129

Sophon demonstrates the best performance on the direct identification task

• **Sophon** (training on 188 classes) has best performance

discr(X
$$\rightarrow bb$$
 vs. QCD) = $\frac{g_{X \rightarrow bb}}{g_{X \rightarrow bb} + \sum_{l=1}^{27} g_{QCD_l}}$

- Performance gain does come from largescale classification (compared to Sophon* (42 classes))
- ParT and ParticleNet for binary classification: they represent the best performance we can reach in experiment now

Sophon: performance benchmark

Sophon demonstrates the best performance also when fine-tuned for new tasks

Search significance:

- Sophon (training on 188 classes) reaches the best performance after fine-tuned (via transfer learning)
- ParT and ParticleNet for binary X→bs vs QCD classification: they reveal the best performance we can reach in the experiment now

Sophon: close to actual ATLAS/CMS performance?

★ marks
QCD BKG rej at
signal eff. = 60%

CMS results CMS-PAS-BTV-22-001

Sophon results (performance on Delphes)

Congqiao Li (Peking University)

Use cases: rediscover the SM particles?

→ Use Sophon to rediscover Z/W/t particles

Focus on dedicated final states, and use Sophon to define corresponding selection discriminants

discr =
$$\frac{g_A}{g_A + \sum_{l=1}^{27} g_{\text{QCD}_l}} \begin{cases} (1): A = \{bb\} \\ (2): A = \{cs\} \\ (3): A = \{ccb, ssb, qqb, bcs, bcq, bsq\} \end{cases}$$

Use cases: discover a BSM resonance

→ Consider triboson signal:

 $W'(m_{W'} = 3 \text{ TeV}) \rightarrow W \phi(m_{\phi} = 400 \text{ GeV}) \rightarrow WWW \rightarrow 6q$

→ Optimize an event-level discriminant

discr =
$$\sum_{jet=1,2} \frac{g_{A,jet}}{g_{A,jet} + \sum_{l=1}^{27} g_{QCD_{l},jet}}$$
(sum for jets 1, 2)
$$\mathbf{A} = \begin{cases} 0.3 \times \{cs, qq\} \\ + 0.1 \times \{ccss, qqcs, qqqq\} \\ + 0.6 \times \{ccs, ccq, ssc, ssq, qqc, qqs, qqq\} \end{cases}$$

arXiv:2405.1297.

Use cases: discover a BSM resonance

Use cases: anomaly detection

→ Background:

- anomaly detection (via a weakly supervised approach) is a novel experimental technique to explore peculiar resonance structures directly from data
- refer to ATLAS and CMS's established methods & results:

PRL 125, 131801 (2020) CMS-PAS-EXO-22-026

not working if there are too few signals in data!

CMS version of "Sophon" is now available!

In CMS, we developed "Global Particle Transformer" (GloParT) — an effort initiated in mid-2022

Process	Final state/ prongness	heavy flavour	# of classes	
H→VV	qqqq	00/10/20	3	
(full-hadronic)	qqq	00/10/20	3	
	evqq		2	
	µ∨qq		2	
H→WW (semi-leptonic)	τ _e vqq	0c/1c	2	
(semi-leptonic)	τ _µ vqq		2	
	τ _h vqq		2	
		bb	1	
H→aa		сс	1	1
11 /99		SS	1	
		qq (q=u/d)	1	1
	$\tau_e \tau_h$		1	1
Η→ττ	$\tau_{\mu}\tau_{h}$		1	
	$\tau_h \tau_h$		1	
t→bW	bqq	1b + 0c/1c	2	
(hadronic)	bq	10 + 00/10	2	
	bev		1	
4 . L\A/	bμv		1	
t→Dvv (leptonic)	bτ _e v	1b	1	
(ieptoriie)	bτ _µ v		1	
	bτ _h v		1	
		b	1	
		bb	1	
QCD		С	1	
		сс	1	
		others (light)	1	

The 1st version has been released: a fatjet tagger for **37-category classification**

CMS-PAS-HIG-23-012

The 1st version has been released:

CMS version of "Sophon" is now available!

In CMS, we developed "Global Particle Transformer" (GloParT) — an effort initiated in mid-2022

Now we've finalized the 3rd version of the Global Particle Transformer **(GloParT-3)** and successfully integrated it into the CMS software

- 750 nodes in total
- <u>expected to benefit all</u> <u>relevant Run 2 & Run 3</u> <u>analyses through 2030</u>

a fatjet tagger for **37-category classification** CMS-PAS-HIG-23-012 GloParT 3: Comprehensive performance review & Upgrade notes **GloParT 3 categorization** H→ZZ* like H→WW* like H→Z(*)Z(*) like $H^{0,\pm} \rightarrow x_1 x_2$ (2-prong) like H→ZZ like H→W(*)W(*) like H→WW like (74×3 classes) H→Z*Z(*) like (15 classes) (19×3 classes) H→W*W(*) like bb, cc, ss, qq, (bc)⁺, (bc)⁻, bs, bbbb, bbcc, bbss, bbgg, cccc, ccss, ccgg, ssss, ssgg, gggg, bbb, bbc, bbs, bbq, ccb, ccc, ccs, ccq, ssb, ssc, sss, ssq, qqb cscs, csqq, qqqq, (cs)+, (cs)-, gg, qqc, qqs, qqq csc, css, csq, qqc, qqs, qqq, bbee, bb $\mu\mu$, bbe, bb μ , bee, b $\mu\mu$, bb $\tau_h\tau_e$, bb $\tau_h\tau_\mu$, bb $\tau_h\tau_h$, b $\tau_h\tau_e$ $\gamma\gamma$, ee, $\mu\mu$, $\tau_h\tau_e$, $\tau_h\tau_\mu$, $\tau_h\tau_h$ csev, qqev, csµv, qqµv, cst_ev, $b\tau_h\tau_\mu$, $b\tau_h\tau_h$, ccee, ccµµ, cce, ccµ, cee, cµµ, cc $\tau_h\tau_h$ CCThTh, CThTe, CThTμ, CThTh, SSEE, SSμμ, SSE, SSμ, SEE, Sμμ $qq\tau_e v$, $cs\tau_\mu v$, $qq\tau_\mu v$, $cs\tau_h v$, $qq\tau_h v$ $H^{0,\pm} \rightarrow \gamma \gamma x_1 x_2$ like SSThTµ, SSThTh, SThTe, SThTµ, SThTh, QQEE, QQµµ, QQE, QQµ, Q $q\mu\mu$, $qq\tau_h\tau_e$, $qq\tau_h\tau_u$, $qq\tau_h\tau_h$, $q\tau_h\tau_e$, $q\tau_h\tau_u$ (40 classes) t→bW like t→bW⁺like (17×2 classes) t→bW- like QCD (5 classes) yybb, yycc, yyss, yyqq, yybc, yycs, yybq, yycq, yysq, $\gamma\gamma gg, \gamma\gamma ee, \gamma\gamma mm, \gamma\gamma \tau_h \tau_e, \gamma\gamma \tau_h \tau_\mu, \gamma\gamma \tau_h \tau_h,$ bWcs, bWqq, bWc, bWs, bWq, bWev, $\gamma\gamma b$, $\gamma\gamma c$, $\gamma\gamma s$, $\gamma\gamma q$, $\gamma\gamma g$, $\gamma\gamma e$, $\gamma\gamma m$, $\gamma\gamma \tau_e$, $\gamma\gamma \tau_\mu$, $\gamma\gamma \tau_h$, $bW\mu v$, $bW\tau_e v$, $bW\tau_\mu v$, $bW\tau_h v$, ybb, ycc, yss, yqq, ybc, ycs, ybq, ycq, ysq, ygg, Wcs, Wqq, Wev, Wμv, Wτ_ev, Wτ_μv, vee. vmm. vthte. vthtu. vtht WT_bV bb, cc, b, c, others

Congqiao Li (Peking University)

Summary: Sophon, GloParT...

- → Sophon: using Sophon on Delphes LHC dataset to (re)study the LHC potential
 - extensive BSM programs to explore with the cutting-edge tool
 - we welcome future collaborations with theorists and phenomenologists to explore novel potentials at the LHC
- → GloParT's opportunity to CMS: expanding the resonance search program with GloParT!
 - ♦ $H/X \rightarrow bb/cc/\tau\tau/WW...$ diverse channels for search
 - broadening conventional searches with GloParT's finetuning capabilities for less-explored channels
 - anomaly detection: the "data-only searches"
- → A bright journey ahead!

Backup

Propose "Large model for large-scale classification

View from jet tagging

- → Instead of training dedicated jet taggers, we consider multiclass classification with N(class) reaches o(100)
 - statistical insights: an ideal multi-class classifier is a stack of ideal binary classifiers
- → The model should be **large** → carry enough capacity
- → The classes should be comprehensive → tagging ability can be further generalized by fine-tuning

View from a pre-training solution

- → Based on a comprehensive jet dataset, we hope to pre-train a base model to facilitate all LHC analyses exploring the large-R jet
- → Set the training task: let the model learn to connect
 "what a jet is like" to "which truth signature the jet reveals"
 (= jet label in our case)
 - ◆ "jet labels" are simple signatures to explore
 → pre-training it as a classifier is just a starting point in this sense!

A glance into fine-tuning spirits

This is a fine-tuning approach (specifically, transfer learning) in its equivalent form

Statistical essence of jet tagging problem

→ Question: where is the limit of jet tagging?

→ Answer: the probability density ratio of two classes provides the optimal tagging

Statistical property of multi-class classifier

→ Statistical theory shows that:

A <u>multi-class</u> classifier with minimum <u>cross-</u> <u>entropy loss</u> <u>estimates the probability ratios</u> on the input classes:

$$g_i(\mathbf{x}) = \frac{p(\text{class} = i | \mathbf{x})}{\sum_{j=1}^{N_{\text{out}}} p(\text{class} = j | \mathbf{x})}$$

hence it contains all the information the ideal N(N-1) binary classifiers can do

29th Mini-workshop on the frontier of LHC

Statistical property of multi-class classifier

29th Mini-workshop on the frontier of LHC

Statistical property of multi-class classifier

Introducing Sophon

- → Signature-Oriented Pre-training for Heavy-resonant ObservatioN
- → the model is based on Particle Transformer (ParT) architecture
- → a pre-trained model on <u>a newly developed comprehensive dataset</u>: JetClass-II
 - finely categorized labels:

Resonant jet: X→ 2 prong	Resonant jet: X→ 3/4 prong	QCD jets	
		bb/cc/ss/qq/gg/ee/μμ/ττ bc/bq/cs/cq ev/μv/τν	

contributed final states:

bb/cc/ss/qq/gg/ee/µµ/тт bc/bq/cs/cq all combination of Y decays, resulting to 4-prong or 3-prong

Key property: we do not focus on any specific *X* and *Y* masses Their masses are variables: ranges from 20-500 GeV

Introducing Sophon

- → Signature-Oriented Pre-training for Heavy-resonant ObservatioN
- → the model is based on Particle Transformer (ParT) architecture
- → a pre-trained model on <u>a newly developed comprehensive dataset</u>: **JetClass-II**

finely categorized labels:

Major types	Index range	Label names All final states!
Resonant jets: $X \to 2$ prong	0–14	$bb,cc,ss,qq,bc,cs,bq,cq,sq,gg,ee,\mu\mu,\tau_{\rm h}\tau_e,\tau_{\rm h}\tau_\mu,\tau_{\rm h}\tau_{\rm h}$
Resonant jets: $X \rightarrow 3 \text{ or } 4 \text{ prong}$	15–160	bbbb, bbcc, bbss, bbqq, bbgg, bbee, bbµµ, bb $\tau_h \tau_e$, bb $\tau_h \tau_\mu$, bb $\tau_h \tau_h$, bbb, bbc, bbs, bbq, bbg, bbe, bbµ, cccc, ccss, ccqq, ccgg, ccee, ccµµ, cc $\tau_h \tau_e$, cc $\tau_h \tau_\mu$, cc $\tau_h \tau_h$, ccb, ccc, ccs, ccq, ccg, cce, ccµ, ssss, ssqq, ssgg, ssee, ssµµ, ss $\tau_h \tau_e$, ss $\tau_h \tau_\mu$, ss $\tau_h \tau_h$, ssb, ssc, sss, ssq, ssg, sse, ssµ, qqqq, qqgg, qqee, qqµµ, qq $\tau_h \tau_e$, qq $\tau_h \tau_h$, qq $t_h \tau_h$, qdb, qqc, qqs, qqq, qqg, qqe, qqµ, gggg, ggee, ggµµ, gg $\tau_h \tau_e$, gg $\tau_h \tau_\mu$, gg $\tau_h \tau_h$, ggb, ggc, ggs, ggq, ggg, gge, ggµ, bee, cee, see, qee, gee, bµµ, cµµ, sµµ, qµµ, b $\tau_h \tau_e$, c $\tau_h \tau_e$, s $\tau_h \tau_e$, $q\tau_h \tau_e$, $b\tau_h \tau_\mu$, $c\tau_h \tau_\mu$, $s\tau_h \tau_\mu$, $q\tau_h \tau_\mu$, $g\tau_h \tau_\mu$, $b\tau_h \tau_h$, $cr_h \tau_h$, $sr_h \tau_h$, qqdb, qqqc, qqqs, bbcq, ccbs, ccbq, ccsq, sscq, qdbc, qqbs, qqcs, bcsq, bcs, bcq, bsq, csq, bcev, csev, bqev, cqev, sqev, qqev, bcµv, csµv, bqµv, cqµv, sqµv, qqµv, bc $\tau_e v$, cs $\tau_e v$, bq $\tau_e v$, sq $\tau_e v$, $gq\tau_e v$, $bc\tau_\mu v$, $cs\tau_\mu v$, $bq\tau_\mu v$, $cq\tau_\mu v$, $sq\tau_\mu v$, $qq\tau_\mu v$, $bc\tau_h v$, $cs\tau_h v$, bq $\tau_h v$, $cq\tau_h v$, $qq\tau_h v$
QCD jets	161–187	bbccss, bbccs, bbcs, bbcs, bbcs, bbc, bbss, bbs, bb

Using Sophon

Using Sophon

Use it out of the box!

Construct a dedicated discr. → perform a bump hunt

Sophon's transfer learning

- Transfer to uncovered tagging scenarios...
- facilitate anomaly detection (weaklysupervised, autoencoder)...
- more potential to unlock!

Use it out of the box!

Construct a dedicated discr. → perform a bump hunt

Background: anomaly detection in weakly-supervised approa

JHEP 10 (2017) 174

Equivalent effect for training **S** vs **B**

- → Recall the early work: CWoLa (classification without labels) Hunting
 - allow to detect anomalies purely from data
 - train a classifier for mass window vs mass sideband (mixed sample 1 vs 2)
 - ★ many improved approaches in recent years → very active field

Events / 100 GeV

Background: anomaly detection in weakly-supervised approa

JHEP 10 (2017) 174

- \rightarrow Recall the early work: CWoLa (classification without labels) Hunting
 - allow to detect anomalies purely from data
 - train a classifier for mass window vs mass sideband (mixed sample 1 vs 2)
 - many improved approaches in recent years \rightarrow very active field

Equivalent effect for training S vs B

can discover $W' \rightarrow W\phi \rightarrow WWW$ signals see $2\sigma \rightarrow 7\sigma$ improvement

Dijet search capabilities

reach this point, **with initial Z=5**, then we have already discovered the signal

discovered the signal without needing to make a cut"

Dijet search capabilities

Combining Sophon's transfer learning (using Sophon's "knowledge") with AD marks a success

- More sensitive at low signal injection (even starting at ~0.6σ)
- Much improved S vs B distinguishability than using high-level input

Dijet search capabilities

Implications to ATLAS/CMS experiments?

- → "Sophon methodology" releases a lot of new opportunities for future LHC experiments
 - it creates a "global large-R jet tagger" → bring benefits of the advanced NN to ~all hadronic final-state searches
 - Also viewed as a pre-trained jet model: a base model tailored for a broad range of LHC analyses
- → How to use the experimental version of the Sophon model?
 - used in conventional analyses: except for some well-calibrated nodes, the major challenge will be the calibration of peculiar signals (not easy to find proxies)
 - ★ data-only analysis: develop discriminants dedicated to different signals → cut tight on the data events → peak finding on some mass observable (single jet / dijet / jet+lepton...)
 - could be helpful in broadly searching for BSM resonance!
 - anomaly detection: weakly-supervised approaches / further improvements?

JetClass-II and Sophon

- → Developed the JetClass-II dataset and the Sophon model
- → JetClass-II [Hugging Face dataset] covers more comprehensive phase spaces and can be a good playground to develop future foundation models
 - how to use it?
 - can be used to train models for various jet-related tasks, e.g. jet classification, regression, generation or reconstruction...
 - its extensive phase space coverage and high statistics enable model developers to focus on specific regions of interest, or work with the entire dataset
 - include detailed low-level information (particle kinematics, PID and IP features), the same as JetClass
 - also include generator-level information (GEN particles within the GEN-jet, and the GEN resonances)
 - generation details can be found in this repository
- → The Sophon model [Hugging Face] can be helpful to deliver future LHC pheno research
 - optimizing sensitivity for dedicated searches/anomaly detection/novel paradigms
 - performing studies on the pheno dataset/model can inspire how we do real experiments at the LHC

