Low-Energy Supernova Constraints on Millicharged Particles

刘佐伟 (南京大学)

第29届 LHC Mini-Workshop 会议

福州大学 2024年12月13-16日

[Changqian Li, ZL, Wenxi Lu, Zicheng Ye, 2408.04953]

- Low-energy supernovae (LESNe)
- Energy deposition in the SN mantle

1 Millicharged particles (MCPs)

Millicharged particles (MCPs)

Hidden sector particle χ with a millicharge ϵ under the SM photon A_{μ}

$$e \epsilon A_{\mu} \bar{\chi} \gamma^{\mu}$$

- charge quantization
- neutrino millicharge
- [see e.g., PandaX, Nature 23'] dark matter millicharge

- $\bar{\chi} \gamma^{\mu} \chi + m_{\chi} \bar{\chi} \chi$

[Dirac 1931; magnetic monopole?]

4

$$A_{\mu} = SM$$
 hypercharge $U(1)_B$ gaug

kinetic mixing [Holdom 86'] [Foot & He 91'] mass mixing [Kors & Nath 04']

ge boson; $X_{\mu} = U(1)_X$ gauge boson

5

$$A_{\mu} = SM$$
 hypercharge $U(1)_B$ gauge boson; $X_{\mu} = U(1)_X$ gauge boson

kinetic mixing [Holdom 86'] [Foot & He 91'] mass mixing [Kors & Nath 04']

[Feldman, ZL, Nath, <u>hep-ph/0702123</u>, 405 cites]

$$\frac{X_{\mu}}{4} + \epsilon A_{\mu}^{2} - \frac{1}{4} X_{\mu\nu}^{\mu\nu} X^{\mu\nu} + g_{\chi}^{2} X_{\mu}^{\mu} \bar{\chi} \gamma^{\mu} \chi + n$$

|--|

$$A_{\mu} =$$
 SM hypercharge $U(1)_B$ gauge boson; $X_{\mu} = U(1)_X$ gauge boson

kinetic mixing [Holdom 86'] [Foot & He 91'] mass mixing [Kors & Nath 04']

[Feldman, ZL, Nath, hep-ph/0702123, 405 cites]

degeneracy between kinetic mixing δ & mass mixing ϵ

$$\frac{X_{\mu}}{4} + \epsilon A_{\mu}^{2} - \frac{1}{4} X_{\mu\nu}^{\mu\nu} X^{\mu\nu} + g_{\chi}^{2} X_{\mu}^{\mu} \bar{\chi} \gamma^{\mu} \chi + n$$

|--|

$$A_{\mu} =$$
 SM hypercharge $U(1)_B$ gauge boson; $X_{\mu} = U(1)_X$ gauge boson

kinetic mixing [Holdom 86'] [Foot & He 91'] mass mixing [Kors & Nath 04']

[Feldman, ZL, Nath, <u>hep-ph/0702123</u>, 405 cites]

- degeneracy between kinetic mixing δ & mass mixing ϵ
- (1) kinetic mixing: MCPs appear with a massless dark photon
 - (2) mass mixing: MCPs appear with a massive dark photon or Z'

$$\frac{X_{\mu}}{4} + \epsilon A_{\mu}^{2} - \frac{1}{4} X_{\mu\nu}^{\mu\nu} X^{\mu\nu} + g_{\chi}^{2} X_{\mu}^{\mu} \bar{\chi} \gamma^{\mu} \chi + n$$

|--|

$$A_{\mu} =$$
 SM hypercharge $U(1)_B$ gauge boson; $X_{\mu} = U(1)_X$ gauge boson

kinetic mixing [Holdom 86'] [Foot & He 91'] mass mixing [Kors & Nath 04']

$$\mathscr{L} = -\frac{1}{4}A_{\mu\nu}A^{\mu\nu} - \frac{\delta}{2}A_{\mu\nu}X^{\mu\nu} - \frac{M_1^2}{2}(X_{\mu} + \epsilon A_{\mu})^2 - \frac{1}{4}X_{\mu\nu}X^{\mu\nu} + g_{\chi}X_{\mu}\bar{\chi}\gamma^{\mu}\chi + n$$

[Feldman, ZL, Nath, <u>hep-ph/0702123</u>, 405 cites]

- degeneracy between kinetic mixing δ & mass mixing ϵ
- (1) kinetic mixing: MCPs appear with a massless dark photon

- (2) mass mixing: MCPs appear with a massive dark photon or Z'
 - [see also Fabbrichesi+, 2005.01515, Dark Photon Review]

|--|

Millicharged dark matter can explain 21 cm anomaly

[Bowman+, Nature 18']

Redshift, z

[Munoz & Loeb, Nature 18']

Constraints on millicharged particles

 $e \epsilon A_{\mu} \bar{\chi} \gamma^{\mu} \chi + m_{\chi} \bar{\chi} \chi$

[Jaeckel & Ringwald, 1002.0329]

high-mass: accelerator

low-mass: stellar cooling

Constraints on millicharged particles

 $e \epsilon A_{\mu} \bar{\chi} \gamma^{\mu} \chi + m_{\chi} \bar{\chi} \chi$

[Jaeckel & Ringwald, 1002.0329]

Supernova constraints

high-mass: accelerator

low-mass: stellar cooling

Constraints on millicharged particles

 $e \epsilon A_{\mu} \bar{\chi} \gamma^{\mu} \chi + m_{\chi} \bar{\chi} \chi$

[Jaeckel & Ringwald, 1002.0329]

Supernova constraints

high-mass: accelerator

low-mass: stellar cooling

Accelerator probes of millicharged particles

SN probes of millicharged particles

SN probes of millicharged particles

SN probes of millicharged particles

Supernova cooling limit

Raffelt criterion

NP < neutrino

[Raffelt, 96']

Supernova cooling limit

Raffelt criterion

NP < neutrino

[Raffelt, 96']

Supernova "calorimetric" limit

Energy transfer < explosion energy

[Falk & Schramm, 78']

[Sung+, 1903.07923]

[Caputo+, 2201.09890]

Supernova "calorimetric" limit

Energy transfer < explosion energy

[Falk & Schramm, 78']

[Sung+, 1903.07923]

[Caputo+, 2201.09890]

Supernova "calorimetric" limit

Energy transfer < explosion energy

[Falk & Schramm, 78']

[Sung+, 1903.07923]

[Caputo+, 2201.09890]

underluminous Type-II P SN

core-collapse SN with a relatively small mass

10-100 times dimmer than typical CCSNe

explosion energy as low as 0.1 B

 $B = 10^{51} \,\mathrm{erg}$

Low-Energy Supernovae (LESNe)

[Caputo+, 2201.09890]

[Burrows & Vartanyan, 2009.14157]

LESN constraints on MCPs

 \mathcal{D}

Mantle

Core

 $\boldsymbol{\chi}$

MCPs production in the core Energy deposition: Coulomb scattering

MCP production in the SN core

MCP production in the SN core

16

MCP production in the SN core

(previously omitted for MCPs)

Plasma effects

Effective photon propagator in Lorenz gauge

$$\tilde{D}^{\mu\nu}(\omega,k) = \sum_{a=\pm,L} \frac{i}{K^2 - \operatorname{Re}\Pi_a(\omega,k) - i\operatorname{Im}\Pi_a(\omega,k)} \epsilon_a^{\mu} \epsilon_a^{\nu^*}$$
$$\epsilon_{\pm}^{\mu} = (0,1,\pm i,0)/\sqrt{2} \qquad \epsilon_L^{\mu} = (k,0,0,\omega)/\sqrt{K^2}$$

LO contributions to real part of the EM polarization tensor

$$\operatorname{Re}\Pi^{\mu\nu} = 16\pi\alpha \int \frac{d^3p}{(2\pi)^3} \frac{1}{2E} [f_{e^-}(E) + f_{e^+}(E)] \frac{K \cdot P(P^{\nu}K^{\mu} + P^{\mu}K^{\nu} - P \cdot Kg^{\mu\nu}) - K^2 P^{\mu\nu}}{(K \cdot P)^2 - (K^2)^2/4}$$

 \implies dispersion relations & normalization

enz gauge [Raffelt, 96']

1 polarization tensor [Braaten & Segel, 93']

and production rates in the plasma

$Im\Pi = -$ In the equilibrium case

photon is time-like with a positive energy):

- inverse-bremsstrahlung process of $\gamma pn \rightarrow pn$
- decay process of $\gamma \rightarrow e^+e^-$

Plasma effects

The imaginary part of the EM polarization tensor is related to the photon absorption

[Weldon, 82']

[An+, 1302.3884]

$$\omega(1-e^{-\omega/T})\Gamma_{\rm abs}$$

In the SN core, the dominant contributions to $Im\Pi$ (relevant for MCP production:

Plasmon decay

decay width (a = T, L) in the SN frame

$$\Gamma_a = Z_a \frac{\epsilon^2 \alpha K^2}{3\omega_a} f\left(\frac{m_{\chi}^2}{K^2}\right)$$

$$f(x) \equiv \sqrt{1 - 4x} \left(1 + 2x\right)$$

photon momentum $K^{\mu} = (\omega, \mathbf{k})$

Lorenz gauge

 Z_a = normalization

millicharged particle flux from plasmon decay

MCP production rate per unit volume per unit energy (relativistic limit) $k \equiv |\mathbf{k}|$

$$\frac{d\Phi_a}{dE_{\chi}} = \frac{g_a}{2\pi^2} \int_0^{\infty} dk \, k^2 \frac{\Gamma_a}{e^{\omega_a/T_c} - 1} g(E_{\chi}, m_{\chi}, K)$$
gy spectrum per decay (plasma frame)
$$\chi(m_{\chi}, K) = 2 \frac{\Theta(E_{\chi} - E_{\chi}^-)\Theta(E_{\chi}^+ - E_{\chi})}{E_{\chi}^+ - E_{\chi}^-}$$

$$E_{\chi}^{\pm} = \frac{1}{2} \left(\omega \pm k \sqrt{1 - 4m_{\chi}^2/K^2} \right)$$
(a)

MCP e

$$\frac{d\Phi_a}{dE_{\chi}} = \frac{g_a}{2\pi^2} \int_0^{\infty} dk \, k^2 \frac{\Gamma_a}{e^{\omega_a/T_c} - 1} g(E_{\chi}, m_{\chi}, K)$$

energy spectrum per decay (plasma frame)
$$g(E_{\chi}, m_{\chi}, K) = 2 \frac{\Theta(E_{\chi} - E_{\chi}^-)\Theta(E_{\chi}^+ - E_{\chi})}{E_{\chi}^+ - E_{\chi}^-}$$
$$E_{\chi}^{\pm} = \frac{1}{2} \left(\omega \pm k \sqrt{1 - 4m_{\chi}^2/K^2} \right)$$
(a)

One-zone model for the supernova

[Caputo+, 2201.09890]

parameters for the SN core

Radius: $R_c = 12.9$ km Temperature: $T_c = 30$ MeV Nuclear Density: $\rho_c = 3 \times 10^{14}$ g/cm³ Proton Abundance: $Y_p = 0.15$

Particle mass/energy in the one-zone model

Photon mass < 12 MeV

Nucleon: $\langle E_n \rangle \simeq 45$ MeV

electron: $\langle E_{e^-}\rangle\simeq 160~{\rm MeV}$

positron: $\langle E_{e^+}\rangle\simeq 90~{\rm MeV}$

low-mass < 6 MeV

high-mass

Proton bremsstrahlung

Proton bremsstrahlung

2-to-4 xsec in terms of 2-to-3 xsec (integr

 $\frac{d\sigma(np \to np\chi\bar{\chi})}{dK^2d\omega} = \frac{\epsilon^2\alpha}{3\pi} \frac{1}{K^2} \frac{d\sigma(np \to np)}{d\omega}$

 $\frac{d\sigma(np \to np\gamma)}{d\omega} = 2\text{-to-3 xsec}$

No plasmon corrections to the photon propagator to avoid double counting w/ plasmon decay

[Chu+, 1908.00553]

rate out
$$\bar{\chi}\chi$$
 PS)

$$\frac{p\gamma}{f}\left(\frac{m_{\chi}^{-}}{K^{2}}\right)$$

[Gninenko+, 1810.06856] [Liang, ZL, Yang, 2111.15533] [Du, Fang, ZL, 2211.11469]

Proton bremsstrahlung

2-to-4 xsec in terms of 2-to-3 xsec (integr

 $\frac{d\sigma(np \to np\chi\bar{\chi})}{dK^2d\omega} = \frac{\epsilon^2\alpha}{3\pi} \frac{1}{K^2} \frac{d\sigma(np \to np\chi\bar{\chi})}{d\omega}$

 $\frac{d\sigma(np \to np\gamma)}{d\omega} = 2\text{-to-3 xsec}$

No plasmon corrections to the photon proton avoid double counting w/ plasmon dec

[Chu+, 1908.00553]

rate out
$$\bar{\chi}\chi$$
 PS) [Gninenko+, 3
 $\underline{np\gamma} f\left(\frac{m_{\chi}^2}{K^2}\right)$ [Liang, ZL, Yau
[Du, Fang, ZL,
where K
 K
 $f(p_1)$
 $n(p_2)$

Gninenko+, 1810.06856] [Liang, ZL, Yang, 2111.15533] [Du, Fang, ZL, 2211.11469]

Photon emission in soft radiation approximation (SRA)

$$\frac{d\sigma(np \to np\gamma)}{d\omega} = \sigma_{np}^T \frac{d\mathcal{P}}{d\omega}$$

 σ_{np}^{T} = transport xsec of $(np \rightarrow np)$

[Chu+, 1908.00553]

[Rrapaj & Reddy, 1511.09136]

Photon emission in soft radiation approximation (SRA)

$$\frac{d\sigma(np \to np\gamma)}{d\omega} = \sigma_{np}^T \frac{d\mathcal{P}}{d\omega}$$

 σ_{np}^{T} = transport xsec of $(np \rightarrow np)$ use data

[Chu+, 1908.00553] [Rrapaj & Reddy, 1511.09136]

Photon emission in soft radiation approximation (SRA)

$$\frac{d\sigma(np \to np\gamma)}{d\omega} = \sigma_{np}^T \frac{d\mathcal{P}}{d\omega}$$

millicharged particle flux in proton bremsstrahlung

 $d\Phi_{\rm pb}$ dE_{γ}

MCP flux in the PB process

$$= \frac{4n_1n_2\epsilon^2\alpha}{3\sqrt{m_N\pi^3T_c^3}} \int_{2m_\chi}^{\infty} dE_{\rm cm}E_{\rm cm}e^{-E_{\rm cm}/T_c}\sigma_{np}^T(E_{\rm cm})$$

$$< \int_{4m_\chi^2}^{E_{\rm cm}^2} \frac{dK^2}{K^2} f\left(\frac{m_\chi^2}{K^2}\right) \int_{\sqrt{K^2}}^{E_{\rm cm}} d\omega \frac{d\mathscr{P}}{d\omega}g(E_\chi, m_\chi, m_\chi)$$

Electron-positron annihilation

Electron-positron annihilation

For transverse (T) and longitudinal (L) photons

$$\frac{2\pi\epsilon^2\alpha^2}{3\beta_e} \frac{N_a K^2 f\left(m_{\chi}^2/K^2\right)}{(K^2 - \text{Re}\Pi_a)^2 + (\text{Im}\Pi_a)^2}$$

$$= \sqrt{1 - 4m_e^2/K^2}$$

EM polarization tensor: $\Pi_a = \text{Re}\Pi_a + i \text{Im}\Pi_a$

$$= 1 - E_{-}^{2}/(E_{+}^{2} - K^{2})$$

= 1 + 4m_{e}^{2}/K^{2} + E_{-}^{2}/(E_{+}^{2} - K^{2})

 $E_{\pm} \equiv E_1 \pm E_2$

EM polarization tensor in the off-shell region

 e^+e^- annihilates at $\sqrt{K^2}$ larger than the photon mass One-zone model: $m_{\gamma} < 12$ MeV & $m_e \simeq 9$ MeV $\Longrightarrow m_{\gamma} < 2m_e$

- In the relativistic limit, we use on-shell dispersion relations to compute Re Π [Braaten & Segel, 93'] [Scherer& Schutz, 2405.18466]
- Dominant contributions to Im Π : proton bremsstrahlung & its inverse $\Longrightarrow~\lesssim 2~\%$

millicharged particle flux in e^+e^- annihilation

$$\frac{d\Phi_{\rm ann}}{dE_{\chi}} = \frac{1}{16\pi^4} \int_{4m_{\rm th}^2}^{\infty} dK^2 K^2 \beta_e \int_{\sqrt{K^2}}^{\infty} dE_+ \int_{-E_-^m}^{E_-^m} dE_- f_1(E_1) f_2(E_2) \,\sigma_{\rm ann} \,g(E_{\chi}, m_{\chi}, K)$$

$$E_{-}^{m} \equiv \beta_{e} \sqrt{E_{+}^{2} - K^{2}}$$

$$m_{\rm th} \equiv \max\{m_e, m_\chi\}$$

Energy deposition in the SN mantle

Energy deposition in the mantle for a single χ

Energy loss due to Coulomb scattering with protons in the mantle (for a single χ)

$$\frac{dE_{\chi}}{dx} = -n_p \int dE_R \frac{d\sigma_{\chi p}}{dE_R} E_R \qquad \square \searrow$$

distance = 3 light-seconds

 $E_R^{\rm max}$ = maximum recoil energy

 $\sigma_{\chi p}^{T}$ = transport xsec w/ Debye screening [Davidson+, hep-ph/0001179]

$$\Delta E_{\chi} = \frac{1}{2} \int dx n_p E_R^{\max} \sigma_{\chi p}^T$$

Total energy transfer from the core to the mantle

Total energy transfer from the core to the mantle

$$E_m = \text{lapse}^2 \times 4\pi\Delta t \int_0^{R_c} drr^2 \int_{m_{\chi}'}^{\infty} dE_{\chi} \frac{d\Phi}{dE_{\chi}} \Delta t$$

 ΔE_{γ} = energy deposited by a single χ in the mantle

$$\Delta t = 3 s$$

 $\frac{1}{dE_{\gamma}}$ = total χ flux (3 production channels) $d\Phi$

lapse
$$\equiv \sqrt{1 - \frac{2GM}{R_c}} = \text{gravitational re}$$

[Caputo+, 2201

- $E_{\gamma} \leq 0.1 B$

redshift & $m'_{\chi} = \frac{m_{\chi}}{\text{lapse}}$

LESN constraints on millicharged

Low-energy supernova limits on millicharged particles

[Li, ZL, Lu, Ye, 2408.04953]

 $e \epsilon A_{\mu} \bar{\chi} \gamma^{\mu} \chi$

probe new para space for $m \gtrsim 10 \text{ MeV}$ better than SN cooling in high-mass region [Davidson+, hep-ph/0001179] [Chang+, 1803.00993] plasmon decay: $m \lesssim 6$ MeV proton bremsstrahlung: $6 \leq m \leq 30$ MeV electron-positron annihilation: $m \gtrsim 30$ MeV

- Low-energy supernovae (LESNe) can have an explosion energy as low as 0.1 B, imposing Ο strong constraints on the energy transfer from the core to the mantle
- We study LESN constraints on millicharged particles, by considering three production Ο channels in the SN core
 - plasmon decay
 - proton bremsstrahlung
 - electron-positron annihilation \Rightarrow important for high-mass (previously omitted)
- Energy deposition in the mantle occurs via Coulomb scattering with protons
- LESNe impose the most stringent constraints on millicharged particles in the mass range of $\sim (10 - 200)$ MeV, surpassing the supernova cooling limit

[Li, ZL, Lu, Ye, 2408.04953]

additional slides

Plasmon decay for low-mass MCPs

Photon mass < 12 MeV

Plasmon decay is the dominant production channel for MCPs w/ mass < 6 MeV

high-mass MCPs

- proton bremsstrahlung
- electron-positron annihilation

Kinetic mixing & mass mixing

$SU(3)_{c} \times SU(2)_{L} \times U(1)_{Y} \times U(1)_{X}$

[Feldman, ZL, Nath, <u>hep-ph/0702123</u>, 405 cites]

 $\mathscr{L} = -\frac{1}{4} B_{\mu\nu} B^{\mu\nu} - \frac{1}{4} X_{\mu\nu} X^{\mu\nu} + g_D X_\mu \bar{\chi} \gamma^\mu \chi - \frac{\tilde{\delta}}{2} B_{\mu\nu} X^{\mu\nu} - \frac{M_1^2}{2} (\partial_\mu \sigma + X_\mu + \tilde{\epsilon} B_\mu)^2$ mass mixing kinetic mixing

kinetic mixing $\delta \delta$ mass mixing $\tilde{\epsilon}$ are degenerate (w/o χ): only $\epsilon \sim (\tilde{\epsilon} - \delta)$ is physical

Supernova explosion energy

Model	Explosion Energy	Run Time	Baryonic Mass	Gravitational Mass
$[M_{\odot}]$	[B]	[s]	$[M_{\odot}]$	$[M_{\odot}]$
9	0.09	2.34	1.35	1.23
10	0.15	3.36	1.49	1.35
11	0.15	3.52	1.51	1.37
12	-0.03	2.75	1.82	1.62
13	0.78	4.60	1.89	1.68
14	0.28	4.51	1.81	1.62
15	-0.17	1.04	1.93	1.71
16	0.36	4.45	1.75	1.56
17	1.86	4.66	2.05	1.81
18	1.24	4.58	1.80	1.60
19	0.63	4.45	1.87	1.66
20	1.22	4.56	2.10	1.85
21	1.74	3.76	2.27	1.97
22	0.95	4.74	2.06	1.81
23	0.73	4.55	2.04	1.80
25	1.39	3.11	2.11	1.85
26	2.3	4.60	2.15	1.88
26.99	1.17	4.60	2.12	1.86

41

Supernova explosion energy

Empirically inferred explosion energies vs. the inferred ejecta masses, with error bars, for a collection of observed Type IIp (plateau) supernovae.

Black dots = theoretical explosion energies

On-shell approximation (OSA) for Re Π_a in off-shell region

OSA: use on-shell dispersion relations to compute Re Π_a in the off-shell region

Imaginary part of Π_a in off-shell region

Energy deposition in the mantle

Coulomb scattering with protons in the mantle

energy loss per unit length

$$\frac{dE_{\chi}}{dx} = -n_p \int dE_R \frac{d\sigma_{\chi p}}{dE_R} E_R$$

 n_p = proton number density in the mantle

 E_R = recoil energy received by protons in the mantle

 $\frac{d\sigma_{\chi p}}{dE_R} = \text{differential Coulomb scattering xsec}$

2-to-2 elastic scattering

For the 2-to-2 elastic scattering

$$E_R = \frac{1}{2} E_R^{\max} (1 - \cos \theta)$$

 θ = scattering angle in the CM frame

 $E_R^{\rm max}$ = maximum recoil energy

46

Debye screening effects

Modified transport xsec

Debye sca

$$z = k_D^2 / 2$$

Debye screening

$$\sigma_{\chi p}^{T} = \frac{2\pi\epsilon^{2}\alpha^{2}}{E_{\chi}^{2}} \left[\frac{2+z}{2} \ln\left(\frac{2+z}{z}\right) - 1 \right]$$

ale:
$$k_D = 2\sqrt{\pi \alpha n_p}/T$$

Energy deposition

Mantle colder than core \implies assume protons initially at rest

$$E_R^{\max} = \frac{2m_p(E_{\chi}^2 - m_{\chi}^2)}{m_p^2 + m_{\chi}^2 + 2}$$

energy deposited by a single MCP particle in the mantle

$$\Delta E_{\chi} = \frac{1}{2} \int dx n_p E_R^{\rm m}$$

distance = 3 light-seconds

Mantle profiles

Proton number density & temperature profiles in the mantle

 $\rho(r) = \rho_c \times (r/R_c)^{-\nu}$ $T(r) = T_c \times (r/R_c)^{-\nu/3}$ $\nu = 5$ $Y_p = 0.15$

 $r > R_c$

Particle energies in the one-zone model

- Photon mass < 12 MeV
- Photon: $\langle E_{\gamma} \rangle \simeq 3T_c = 90 \, \text{MeV}$
- Nucleon: $\langle E_n \rangle \simeq 45$ MeV
- electron chemical potential: $\mu \simeq 167 \text{ MeV}$
- electron: $\langle E_{e^-}\rangle\simeq 160~{\rm MeV}$
- positron: $\langle E_{e^+}\rangle\simeq 90~{\rm MeV}$

low-mass < 6 MeV

high-mass

