Dark Matter and PBH Constraints from Radio and X-ray Observations

Ding Ran

Yifan Chen, RD, Yuxin Liu, Yosuke Mizuno, Jing Shu, Haiyue Yu and Yanjie Zeng, arXiv:2404.16673 Zihong Cheng, RD, Yi Liao and Chi Tian, arXiv: 2412.xxxxx

第29届 LHC Mini-Workshop 福州 2024.12.13-12.16

Outline

Introduction

- Illuminating M87* Inner Shadow with DM Annihilation
- DM Constraints from Diffuse Galactic Radio emission
- Limits on Primordial Black Hole as DM with X-ray observations

Introduction

• Evidences for DM

CMB

•DM candidates

DM detections

Multi-frequency observations

 Current and future radio and microwave observations

Illuminating M87* Inner Shadow with DM Annihilation

• The Event Horizon Telescope (EHT) project

- EHT collaboration: an international collaboration capturing images of black holes using a virtual Earth-sized telescope based on VLBI (Very Long Baseline Interferometry) Technology.
- Primary Observing Targets:
 - Sgr A*: the SMBH at the center of the Milky Way.
 - M87*: the SMBH living at M87 center (a giant elliptical galaxy in the constellation Virgo).
- The resolution achievable on Sgr A* with current and future EHT baselines.

Baseline	Resolution at 230 GHz	Resolution at 345 GHz
LMT - SMT	140 µas/ 14 R _{Sch}	93 µas/ 9.3 R _{Sch}
Hawaii - SMT	58 µas/ 5.8 R _{Sch}	39 µas/ 3.9 R _{Sch}
Hawaii - ALMA	28 µas/ 2.8 R _{Sch}	19 µas/ 1.9 R _{Sch}
Plateau de Bure - South Pole	23 µas/ 2.3 R _{Sch}	15 µas/ 1.5 R _{Sch}

• First image of a SMBH: M87*

• DM spike scenario

• Adiabatic growth of SMBH will significantly enhance the DM density and form a spiky structure.

P. Dehnen, MNRAS 265,250-256 (1993) G.D. Quinlan, Hernquist, S.sigurdsson , APJ 440;554-564250-256 (1995)

P. Gondolo & J. Silk, PRL 83(1999)

• Approximate power-low model

P. Gondolo & J. Silk, PRL 83(1999)

$$\rho_{\rm sp}(r) = \rho_r g_{\gamma}(r) \left(\frac{R_{\rm sp}}{r}\right)^{\gamma_{\rm sp}}$$

$$\rho_r = \rho_0 \left(\frac{R_{\rm sp}}{r_0}\right)^{-\gamma}, \quad R_{\rm sp} = \alpha_{\gamma} r_0 \left(\frac{M_{\rm BH}}{\rho_0 r_0^3}\right)^{1/(3-\gamma)}$$

$$g_{\gamma}(r) = \left(1 - \frac{2R_s}{r}\right)^3, \quad \gamma_{\rm sp} = \frac{9 - 2\gamma}{4 - \gamma}$$

• DM spike profile with annihilation

$$\rho(\vec{r}) = \begin{cases} 0\\ \rho_{\rm sat} \equiv m_{\rm DM} / (\langle \sigma v \rangle t_{\rm BH})\\ \rho_{\rm sp}(r) \equiv \rho_0 \left(r/r_0 \right)^{-\gamma_{\rm sp}}\\ \rho_{\rm halo}(r) = \rho_0 (r_{\rm sp}/r_0)^{-\gamma_{\rm sp}} (r/r_{\rm sp})^{-1} \end{cases}$$

• Synchrotron emission around SMBH due to DM annihilation

• DM annihilation energy spectra

 Electron-positron energy spectra and number density

 Magnetic field model Based on GRMHD simulations

Limits on DM annihilation cross sections

• Intensity Map of synchrontron emission

DM Constraints from Diffuse Galactic Radio emission

• Sky Maps from observation: 10 MHz to 857 GHz

• Modeling diffuse Galactic radio emission

Astrophysical emission components: Synchrotron + CMB + Free-free emission + Thermal dust

galprop_v57

PLANCK template model

T.A. Porter, G. Johannesson and I.V. Moskalenko, [2112.12745] PLANCK collaboration, PAstron. Astrophys. [1502.01588]

Component	Free Parameters and Priors	Brightness Temperature, $T_b(\nu)$ [μK_{RJ}]	Additional Information			
CMB		$T_b^{\text{CMB}}(\nu) = 10^6 \frac{c^2 I(\nu,T)}{2\nu^2 k_B}$	$I(\nu, T) = \frac{2h\nu^3}{c^2} \frac{1}{\exp[h\nu/(k_B T_{\rm CMB})] - 1}$			
			$T_{\rm CMB} = 2.7255K$			
Free-Free	$\log \mathrm{EM} \sim U(-\infty,\infty)$		$\tau = 0.05468 T_{\rm e}^{-3/2} \nu_9^{-2} \text{EM} \cdot g_{\rm ff}$			
	$T_{\rm e} \sim \mathcal{N}(7000 {\rm K}, 500 {\rm K})$	$T_b^{\rm ff}(\nu) = 10^6 T_{\rm e}(1 - e^{-\tau})$	$g_{\rm ff} = \log \left\{ \exp \left[5.960 - \sqrt{3} / \pi \log(\nu_9 T_4^{-3/2}) \right] + e \right\}$	$c^2 I$ (11)		
			$T_4 = T_{\rm e}/(10^4 {\rm K}), \nu_9 = \nu/(10^9 {\rm Hz})$	$T_{L}^{\text{syn}}(\nu) = \frac{c T_{\text{syn}}(\nu)}{c}$		
Thermal Dust	$A_{\rm d} > 0$			o () $2 u^{2}k_{B}$		
	$\beta_d \sim \mathcal{N}(1.55, 0.1)$	$T_{h}^{\text{dust}}(\nu) = A_{\text{d}} \left(\frac{\nu}{\nu_{0}}\right)^{\beta_{\text{d}}+1} \frac{\exp(\gamma\nu_{0})-1}{\exp(\gamma\nu)-1}$	$\nu_0 = 545 \text{GHz}$			
	$T_d \sim \mathcal{N}(23\mathrm{K}, 3\mathrm{K})$					
Propaga	ation model	Astrophysical injection				
$rac{\partial \psi(ec{r},p,t)}{\partial t} = q(ec{r},p,t) + ec{ abla} \cdot (D_{xx}ec{ abla}\psi - ec{V}\psi) + rac{\partial}{\partial p}p^2 D_{pp}rac{\partial}{\partial p}rac{1}{p^2}\psi - rac{\partial}{\partial p} \Big[\dot{p}\psi - rac{p}{3}(ec{ abla}\cdotec{V})\psi\Big] + rac{\partial}{\partial p}p^2 D_{pp}rac{\partial}{\partial p}rac{1}{p^2}\psi - rac{\partial}{\partial p}\left[\dot{p}\psi - rac{p}{3}(ec{ abla}\cdotec{V})\psi ight]$						
Propaga	ation parameters	5	 Galactic Magnet 	ic Field (GMF) model		
parameters D	$D_{0,xx}[10^{28} \mathrm{cm}^2 \mathrm{s}^{-1}] \mid D_R \text{ [MV]}$	$D_{br} [\mathbf{MV}] \qquad \qquad \delta_1$				

F	$=0,xx[-\circ$	$= n \mathbf{L} - \mathbf{J}$	$= 01 \ \Gamma_{-} = 1$	- 1
values	4.161	4.0e3	4.3e30	0.35271
parameters	δ_2	η	diff_ reacc (for galprop)	V_{Alf} [km s ⁻¹]
values	0.404	1.0	-1	15.32

• Intensity from DM annihilation

Limits on Primordial Black Hole as DM with X-ray observations

• PBH as a DM candidate

Constraints on the PBH DM for a

Production mechanism of PBH

• PBH Hawking evaporation

• Temperature

$$T_{\rm BH} = \frac{M_P^2}{8\pi M_{\rm BH}}$$

• Primary emission spectrum

$$\frac{d^2 N_i}{dt dE_i} = \frac{1}{2\pi} \sum_{\text{d.o.f.}} \frac{\Gamma_i(E_i, M, a^\star)}{e^{E'_i/T} \pm 1}$$

BlackHawk + hazama

• Number of electron-positron injected by PBHs evaporation

$$Q_{e}(E_{e},\vec{x}) = f_{\text{PBH}}\rho_{\text{DM}}(\vec{x}) \int_{M_{\min}}^{\infty} \frac{dM}{M} \frac{dN_{\text{PBH}}}{dM} \frac{d^{2}N_{e}}{dtdE_{e}}$$

$$\frac{\partial\psi(\vec{r},p,t)}{\partial t} = q(\vec{r},p,t) + \vec{\nabla} \cdot (D_{xx}\vec{\nabla}\psi - \vec{V}\psi) + \frac{\partial}{\partial p}p^{2}D_{pp}\frac{\partial}{\partial p}\frac{1}{p^{2}}\psi - \frac{\partial}{\partial p}\left[\dot{p}\psi - \frac{p}{3}(\vec{\nabla}\cdot\vec{V})\psi\right]$$

Summary

- We present the advanced calculations of DM annihilation near SMBH M87*.
- We developed a comprehensive framework to calculate electron-positron propagation under strong gravity and magnetic fields, based on GRMHD simulations that are best-fit to current intensity and polarimetric observations of the SMBH.
- Our study shows a possible way for DM searches through the morphology of BH images, including significant exclusion results based on current and projected EHT observations.
- These results provide immediate relevance and significance, showcasing the ability of existing EHT data to contribute to DM studies.

Thanks for your attention

Welcome to visit Cosmology & Astroparticle group at AHU!