Experimental Overview: Electroweak

The status of electroweak global fit

*****7 key observables in electroweak global fit

- ► Consistency study of the standard model electroweak section
- ▶ Need CEPC Z pole and WW runs : Precise measurements on EWK observables.

W mass measurement

 m_W is a key observable to test SM consistency

▶ m_W Measurement at future collider is essential

Science Vol 376, Issue 6589, pp. 170-176 (2022)

ATLAS W mass (run I data reanalysis)

arXiv:2403.15085

✤ New ATLAS result m_w = 80366.5 ± 15.9 MeV, old result (2017, ATLAS) mW = 80370 ± 19 MeV

• $\Gamma_{W} = 2202 \pm 47 \text{ MeV}$, Most precise single-experiment measurement of ΓW

New CMS W mass measurement

- Measured with uncertainty of 9.9 MeV
 - Precision comparable to CDF
 - ▶ 16.8 fb⁻¹ from 2016 run (~ 30 pileup)
 - \blacktriangleright Large sample (>100M) of W ${\rightarrow}\mu\nu$
- * Fit to granular distribution of $pT_{\mu} x \eta_{\mu} x$ charge

CMS-	PAS-SI	MP-23-	·002

Source of uncortainty	Impact (MeV)		
Source of uncertainty	Nominal	Global	
Muon momentum scale	4.8	4.4	
Muon reco. efficiency	3.0	2.3	
W and Z angular coeffs.	3.3	3.0	
Higher-order EW	2.0	1.9	
$p_{\rm T}^{\rm V}$ modeling	2.0	0.8	
PDF	4.4	2.8	
Nonprompt background	3.2	1.7	
Integrated luminosity	0.1	0.1	
MC sample size	1.5	3.8	
Data sample size	2.4	6.0	
Total uncertainty	9.9	9.9	

W mass measurement (ATLAS and CMS comparison)

Next step in ATLAS W mass measurement

Eur. Phys. J. C 84 (2024) 1126

*****ATLAS is exploring low pileup run 2 data (5 TeV 255 pb⁻¹, 13 TeV: 338 pb⁻¹)

- ► First step to measure the W/Z pT (done)
- Expect to update W mass measurement with higher precision

Weak mixing angle measurements ($Sin^2\theta_W$)

Weak mixing angle measurement is well motivated

SLD: A,

D0 2 TeV

Preliminary

Preliminary

- \blacktriangleright ~3 σ tension between LEP and SLC measurements
- ► LHC results can reach similar precision level now

*High quality muon reconstruction in LHCb in $2.0 < |\eta| < 4.5$

*****Reconstruction of electrons in CMS extended to $|\eta| < 4.36$

Weak mixing angle @LHC

*****PDF uncertainties is the key

CMS: $\sin^2 \theta_{\text{eff}}^{\ell} = 0.23157 \pm 0.00010 \text{ (stat)} \pm 0.00015 \text{ (syst)} \pm 0.00009 \text{ (theo)} \pm 0.00027 \text{(PDF)}$ LHCb: $\sin^2 \theta_{\text{eff}}^{\ell} = 0.23152 \pm 0.00044 \text{ (stat)} \pm 0.00005 \text{ (syst)} \pm 0.00022 \text{ (theo/PDF)}$

Weak mixing angle *a* HL-LHC

Extension of CMS/ATLAS acceptance forward during HL-LHC era increases the sensitivity to the Weinberg angle

Studies here using muon channel.

CMS expect to have PDF uncertainties with precision of LEP+SLD average with $L_{int} > O(300 \text{ fb}^{-1})$ using extended acceptance.

Overview of electroweak measurements at LHC

12

Diboson polarization

- Diboson polarization measurements have gained increasing interest
 - ▶ in both the theory and experiment community in recent years
 - ▶ Important probes of the EWK and Higgs sectors

W e		\mathbf{SM}	BSM
V	$q_{L,R}\bar{q}_{L,R} \to V_L V_L(h)$	~ 1	$\sim E^2/M^2$
L R	$q_{L,R}\bar{q}_{L,R} \rightarrow V_{\pm}V_{L}(h)$	$\sim m_W/E$	$\sim m_W E/M^2$
	$q_{L,R}\bar{q}_{L,R} \rightarrow V_{\pm}V_{\pm}$	$\sim m_W^2/E^2$	$\sim E^2/M^2$
backward forward	$q_{L,R}\bar{q}_{L,R} \to V_{\pm}V_{\mp}$	~ 1	~ 1

Diboson polarization

Longitudinal polarisation generated by electroweak symmetry breaking
 asymptotically behave like Goldstone bosons of electroweak symmetry

Diboson polarization

Experiments gain sensitivity to V_LV_L production, starting to study energy dependence of cross section

Evidence for $Z_L Z_L$ production in JHEP 12 (2023) 107 Study of energy dependence of $W_L Z_L$ prod. in arXiv:2402.16365

• Ultimate test of electroweak symmetry breaking is the study of $V_L V_L$ scattering at the HL-LHC

Analysis of $W_L^{\pm}W_X^{\pm}jj$ and $W_L^{\pm}W_L^{\pm}jj$ in PLB 812 (2020) 136018

Diboson WZ polarization

ATLAS, PRL133 (2024) 101802

16

Triboson WWy production

Phys. Rev. Lett. 132 (2024) 121901 编辑推荐

♦ CMS 发现新的三玻色子物理过程

▶并对希格斯与轻夸克耦合给出世界最灵敏探测

https://www.nature.com/articles/ d41586-024-00764-8

nature > research highlights > article

RESEARCH HIGHLIGHT 21 March 2024

Process	$\sigma_{\rm up}$ pb exp.(obs.)	Yukawa couplings lim
$u\overline{u} \rightarrow H + \gamma \rightarrow e\mu\gamma$	0.067 (0.085)	$ \kappa_{\rm u} \le 13000 \ (16000)$
$d\overline{d} \rightarrow H + \gamma \rightarrow e\mu\gamma$	0.058 (0.072)	$ \kappa_{\rm d} \leq 14000 \ (17000)$
$s \overline{s} ightarrow H + \gamma ightarrow e \mu \gamma$	0.049 (0.068)	$ \kappa_{\rm s} \leq 1300 \ (1700)$
$c\overline{c} ightarrow H + \gamma ightarrow e \mu \gamma$	0.067 (0.087)	$ \kappa_{\rm c} \le 110(200)$

A supercollider glimpses a gathering of three particles never seen together before

Data from billions of proton collisions reveal that subatomic particles called W^+ and W^- bosons keep company with a photon.

CMS-PAS-SMP-22-018 北大、中山

***WZγ过程的观测显著度超过5s**

▶对四规范玻色子耦合WWZγ灵敏

LHC as a Vector Boson Collider

VBS observations				
<i>W[±]W[±]jj</i> (same-sign)	CMS: <u>PRL 120 (2018) 081801</u> ATLAS: <u>PRL 123 (2019) 161801</u>			
<i>W[±]W[∓]jj</i> (opposite-sign)	CMS, <u>PLB 841 (2023) 137495</u> ATLAS, <u>JHEP 07 (2024) 254</u>			
₩ [±] Zjj	ATLAS, <u>PLB 793 (2019) 469</u> CMS, <u>PLB 809 (2020) 135710</u>			
Wγjj	CMS, <u>PLB 811 (2020) 135988</u> ATLAS, <u>EPJC 84 (2024) 1064</u>			
Ζγϳϳ	CMS, <u>PRD 104 (2021) 072001</u> ATLAS, <u>PLB 846 (2023) 138222</u>			
ZZjj	ATLAS, Nature Phys. 19 (2023) 237			

ATLAS WWjj observation

- Observed by CMS(2023)
- Very challenging due to high background \rightarrow a DNN discriminant used

ATLAS Wyjj observation

- Observed by CMS(2020)
- Very challenging due to high background \rightarrow a DNN discriminant used

Observed significance well above 6σ (expected 6.3σ)

cross-sections measured

aQGC operators

First search for VBS WWH

北大

◆2→3 玻色子散射过程的探测为多玻色子物理研究开辟新的疆域

▶ WWHH耦合强度被限制在[-3.33, 5.33]的范围中。

WH Vector boson scattering

arXiv:2405.16566 投稿至 PLB

☆新型VBS过程的首次探测,超过5s显著度

✤排除了HWW 和HZZ 耦合具有相反符号的新物理场景

Rep. Prog. Phys. 87 (2024) 107801

☆首次观测pp对撞光生过程,对Tau轻子磁矩最佳测量,误差减小5倍

▶ $g\tau = 2.0018 + 0.0064 - 0.0062 (0.3\%)$

北大

CMS EFT global fit

- SMEFT Warsaw basis
- Constraints on Wilson Coefficients
- Constraints also set on linear combinations of WCs (eigen-vectors from the Principal Component Analysis)

CMS-PAS-SMP-24-003

Future Electroweak measurement: CEPC physics program

An extremely versatile machine with a broad spectrum of physics opportunities

→ Far beyond a Higgs factory

	Оре	ration mode	ZH	Z	W⁺W⁻	tī
	٦	√ <i>s</i> [GeV]	~240	~91.2	~160	~360
	Run	time [years]	10	2	1	5
CDR (30 MW)		L / IP [×10 ³⁴ cm ⁻² s ⁻¹]	3	32	10	-
		∫ <i>L dt</i> [ab ⁻¹ , 2 IPs]	5.6	16	2.6	-
		Event yields [2 IPs]	1×10 ⁶	7×10 ¹¹	2×10 ⁷	-
	Run	Time [years]	10	2	1	~5
Tatest 100 N O	30 MW	L / IP [×10 ³⁴ cm ⁻² s ⁻¹]	5.0	115	16	0.5
		L / IP [×10 ³⁴ cm ⁻² s ⁻¹]	8.3	191.7	26.6	0.8
	50 MW	∫ <i>L dt</i> [ab ⁻¹ , 2 IPs]	20	96	7	1
		Event yields [2 IPs]	4×10 ⁶	4×10 ¹²	5×10 ⁷	5×10 ⁵

- ***** First 10 year operation
 - Higgs factory
 - Iow-lumi Z (20% of high-lumi Z)
 - Detector calibration and alignment
 - Physics with Giga-Z
- * 2 year of high-lumi Z factory operation
- * 1 year of WW threshold scan
- S year of ttbar runs

Both 50 MW and $t\bar{t}$ modes are currently considered as CEPC upgrades.

Future Electroweak measurement: CEPC physics program

Observable	current precision	CEPC precision (Stat. Unc.)	CEPC runs	main systematic
Δm_Z	$2.1 { m MeV} [37-41]$	$0.1 { m MeV} (0.005 { m MeV})$	${\cal Z}$ threshold	E_{beam}
$\Delta\Gamma_Z$	$2.3 { m MeV} [37-41]$	$0.025~{\rm MeV}~(0.005~{\rm MeV})$	${\cal Z}$ threshold	E_{beam}
Δm_W	9 MeV [42–46]	$0.5 { m MeV} (0.35 { m MeV})$	$WW\ {\rm threshold}$	E_{beam}
$\Delta\Gamma_W$	$49 { m MeV} [46-49]$	$2.0 { m MeV} (1.8 { m MeV})$	$WW\xspace$ threshold	E_{beam}
Δm_t	0.76 GeV [50]	$\mathcal{O}(10) \mathrm{MeV}^{a}$	tt threshold	
ΔA_e	$4.9\times 10^{-3}\ [37,5155]$	$1.5\times 10^{-5}~(1.5\times 10^{-5})$	Z pole $(Z \to \tau \tau)$	Stat. Unc.
ΔA_{μ}	$0.015 \ [37, 53]$	$3.5\times 10^{-5}~(3.0\times 10^{-5})$	Z pole $(Z \to \mu \mu)$	point-to-point Unc.
ΔA_{τ}	$4.3\times 10^{-3}\ [37,5155]$	$7.0\times 10^{-5}~(1.2\times 10^{-5})$	Z pole $(Z \to \tau \tau)$	tau decay model
ΔA_b	0.02 [37, 56]	$20\times 10^{-5}~(3\times 10^{-5})$	Z pole	QCD effects
ΔA_c	$0.027 \ [37, 56]$	$30\times 10^{-5}~(6\times 10^{-5})$	Z pole	QCD effects
$\Delta \sigma_{had}$	37 pb [37–41]	2 pb (0.05 pb)	Z pole	lumiosity
δR_b^0	0.003 [37, 57–61]	$0.0002~(5\times 10^{-6})$	Z pole	gluon splitting
δR_c^0	$0.017 \ [37, 57, 6265]$	$0.001~(2\times 10^{-5})$	Z pole	gluon splitting
δR_e^0	$0.0012 \ [37-41]$	$2\times 10^{-4}~(3\times 10^{-6})$	Z pole	E_{beam} and t channel
δR^0_μ	$0.002 \ [37-41]$	$1\times 10^{-4}~(3\times 10^{-6})$	Z pole	E_{beam}
$\delta R_{ au}^0$	$0.017 \ [37-41]$	$1\times 10^{-4}~(3\times 10^{-6})$	Z pole	E_{beam}
δN_{ν}	0.0025 [37, 66]	$2\times 10^{-4}~(3\times 10^{-5}$)	ZH run $(\nu\nu\gamma)$	Calo energy scale

CEPC snowmass input: https://arxiv.org/abs/2205.08553

CEPC is expected to improve the current precision by 1-2 orders of magnitude, offering a great opportunity to test the consistency of the SM.

Numerous results of precision electroweak physics released

► Active field on both theoretical and experimental side

*****What may come next ?

- ▶ Update of W mass and weak mixing angle measurements with better precision
- ► Diboson polarizations in high energy region
- ▶ More rare processes in triboson and Vector boson scattering

