

Measuring hhWW Coupling at the Future Lepton Collider

Beijing Normal University

第29届LHC Mini-Workshop会议

刘言东

- Based on Phys. Rev. D 109, 073005 (2024)
- In collaboration with Qing-Hong Cao, Kun Cheng and Xiao-Rui Wang
 - Fuzhou, December 15, 2024

Higgs boson discovery at the LHC

Beijing Normal University

Flow Chart of the Higgs Boson Couplings Measurement

Beijing Normal University

See Prof. Qian's Talk $y_{ht\bar{t}}$

Flow Chart of the Higgs Boson Couplings Measurement

Beijing Normal University

See Prof. Zhang's Talk

 $y_{htar{t}}$

 λ_{hhh}

Flow Chart of the Higgs Boson Couplings Measurement

Beijing Normal University

hhVV coupling in the SM and NP models

• Comparison of hhVV and hVV couplings in the Standard Model

- Comparison of hhVV and hVV couplings in New Physics models
 - Extensions of the Higgs boson sector: Triplet Higgs boson model
 - ◆ Extensions of the gauge group: 3-3-1 model
 - Composite Higgs boson scenarios: κ_{hVV} =

Beijing Normal University

$$=\sqrt{1-v^2/f^2}, \kappa_{hhVV}=1-2v^2/f^2$$

hhVV coupling in the SM and NP models

• Comparison of hhVV and hVV couplings in the Standard Model

• Extensions of the Higgs boson sector: Triplet Higgs boson model

◆ Extensions of the gauge group: 3-3-1 model

 \bullet Composite Higgs boson scenarios: κ_{hVV} =

Beijing Normal University

Precision measurement of the SM electroweak breaking mechanism Searching for the NP beyond the SM

$$=\sqrt{1-v^2/f^2}, \kappa_{hhVV}=1-2v^2/f^2$$

hhVV Coupling at the LHC

- (2020), Phys. Rev. D 108 (2023) 052003
- JHEP2022,172, (2022)

 $g_{hhVV}/g_{hhVV}^{SM} = \kappa_{hhVV}$

Beijing Normal University

• κ_{hhVV} lies in the range [0, 2.1]; κ_{hVV} lies in the range [0.97, 1.13]; Phys. Rev. D 101, 012002

• The coupling κ_{hhVV} can be measured with a precision of 40 % at the HL-LHC using GNNs;

 $g_{hVV}/g_{hVV}^{SM} = \kappa_{hVV}$

hhVV Coupling at the LHC

- (2020), Phys. Rev. D 108 (2023) 052003
- JHEP2022, 172, (2022)

Beijing Normal University

• κ_{hhVV} lies in the range [0, 2.1]; κ_{hVV} lies in the range [0.97, 1.13]; Phys. Rev. D 101, 012002

• The coupling κ_{hhVV} can be measured with a precision of 40% at the HL-LHC using GNNs

Comparison of hhVV and hVV Couplings at the LHC

• κ_{hhVV} can only be measured through di-Higgs boson production • • *n*

 $\sigma(pp \rightarrow jjh) \sim 3$ pb and $\sigma(pp \rightarrow jjhh) \sim 1.5$ fp at the 13 TeV LHC

• Gluon fusion dominates di-Higgs boson production at the LHC

Beijing Normal University

• κ_{hVV} can be measured through single Higgs boson production and decay processes

Comparison of hhVV and hVV Couplings at the LHC

 $\sigma(pp \rightarrow jjh) \sim 3$ pb and $\sigma(pp \rightarrow jjhh) \sim 1.5$ fp at the 13 TeV LHC

• Gluon fusion dominates di-Higgs boson production

Beijing Normal University

• κ_{hVV} can be measured through single Higgs boson production and decay processes

clearer and higher energy collider •••*h*

ydliu@bnu.edu.cn

11

Di-Higgs boson production at the lepton collider

Nucl. Phys. B 249, 42 (1985), J. High Energ. Phys. 2020, 80 (2020), JHEP 2022, 114 (2022)

• The subproces \boldsymbol{N}

$$\frac{4^{\mu\nu}}{g_{hWW}} = \begin{bmatrix} \frac{3m_{h}^{2}g_{hWW}}{(\hat{s} - m_{h}^{2})\nu} + 2g_{hhWW} + \left(\frac{g_{hWW}^{2}}{\hat{t} - m_{W}^{2}} + \frac{g_{hWW}^{2}}{\hat{u} - m_{W}^{2}}\right) \end{bmatrix} g^{\mu\nu} - \frac{g_{hWV}^{2}}{g_{hhVV}} + \frac{g_{hWV}^{2}}{\hat{t} - m_{W}^{2}} \end{bmatrix} g^{\mu\nu} - \frac{g_{hWV}^{2}}{g_{hhVV}} \left[\frac{g_{hWV}^{2}}{\hat{t} - m_{W}^{2}} + \frac{g_{hWV}^{2}}{\hat{u} - m_{W}^{2}}\right] g^{\mu\nu} - \frac{g_{hVV}^{2}}{g_{hhVV}} + \frac{g_{hVV}^{2}}{\hat{u} - m_{W}^{2}} \end{bmatrix} g^{\mu\nu} - \frac{g_{hVV}^{2}}{g_{hVV}} + \frac{g_{hVV}^{2}}{\hat{u} - m_{W}^{2}} = \kappa_{hVV} + \frac{g_{hVV}^{2}}{\hat{u} - m_{W}^{2}}$$

Beijing Normal University

Di-Higgs boson production at the lepton colliders

Nucl. Phys. B 249, 42 (1985), J. High Energ. Phys. 2020, 80 (2020), JHEP 2022, 114 (2022)

• The subprocess $VV \to hh$ amplitude is sensitive to the κ_{hhWW} and κ_{hWW} couplings $M_{LL} = \frac{\hat{s}}{v^2} \left(\kappa_{hhWW} - \kappa_{hWW}^2 \right) + \mathcal{O}(\hat{s}^0)$

Beijing Normal University

Di-Higgs boson production at the lepton colliders

Nucl. Phys. B 249, 42 (1985), J. High Energ. Phys. 2020, 80 (2020), JHEP 2022, 114 (2022)

• The subprocess $VV \rightarrow hh$ amplitude is sensitive to the κ_{hhWW} and κ_{hWW} couplings $M_{LL} = \frac{s}{v^2} \left(\kappa_{hhWW} - \kappa_{hWW}^2 \right) + \mathcal{O}(\hat{s}^0)$

• The coupling κ_{hWW} can be measured with a precision of 4% in single Higgs boson production; arXiv:2207.03862

Beijing Normal University

Di-Higgs Boson Production at Lepton Colliders

Beijing Normal University

Di-Higgs Boson Production at Lepton Colliders

Beijing Normal University

WBF

ZBF

Zhh

hh–loop

Di-Higgs Boson Production Rate at a 10 TeV Muon Collider

 $\sigma^{hh} = 177.2\kappa_{hhww}^2 + 206.1\kappa_{hww}^4 + 0.88\kappa_{hww}^2$ $-378.1\kappa_{hhww}\kappa_{hww}^2 - 12.11\kappa_{hww}^3 + 9.08\kappa_{hhww}\kappa_{hww}$

Beijing Normal University

Collider Simulation at a 10 TeV Muon Collider

- Signal $\mu^+\mu^- \to \nu_\mu \bar{\nu}_\mu h(\to b\bar{b})h(\to b\bar{b}) \Rightarrow 4b$ -Jets + \mathcal{E}
- Backgrounds:

 $\blacklozenge \mu^+ \mu^- \to \nu_u \bar{\nu}_u h (\to b\bar{b}) Z (\to b\bar{b}) \ \mu^+ \mu^- \to \nu_u \bar{\nu}_u Z (\to b\bar{b}) Z (\to b\bar{b})$ $\bigstar \mu^{\pm} \gamma \to h(\to b\bar{b}) W^{\pm}(\to j\bar{j}) \nu_{\mu}(\bar{\nu}_{\mu}) \mu^{\pm} \gamma \to Z(\to b\bar{b}) W^{\pm}(\to j\bar{j}) \nu_{\mu}(\bar{\nu}_{\mu})$ $\bigstar \mu^+ \mu^- \rightarrow Z(\rightarrow b\bar{b})Z(\rightarrow b\bar{b}) \ \mu^+ \mu^- \rightarrow Z(\rightarrow b\bar{b})h(\rightarrow b\bar{b})$

Beijing Normal University

 $p_{b \to b} = 0.9, \quad p_{c \to b} = 0.3, \quad p_{j \to b} = 0.05$

Cuts Flow at the 10 TeV Muon Collider

- Pre-selection cuts: $n^{\ell}(p_T > 10 \text{ GeV}) = 0, E > 10 \text{GeV},$ $p_T^{jet} > 15 \text{ GeV}, -4.0 < \eta^{jet} < 4.0, \Delta R^{mn} > 0.5$
- Higgs Boson mass window: $100 \text{ GeV} < m_{bb} < 150 \text{ GeV}$
- Di-Higgs Boson Selection: $\chi^2(m_1, m_2) \equiv \min_{i, j, k, l} \left[(m_{b_i b_j} - m_1)^2 + (m_{b_k b_l} - m_1)^2 \right]$ $\chi^2(m_h, m_h) < \chi^2(m_Z, m_Z), \quad \chi^2(m_h, m_h) < \chi$
- Missing energy cut: $M_{\text{recoil}} \equiv \sqrt{(p_1 + p_2 - p_{h_1} - p_{h_2})^2} M_{\text{recoil}} \ge 200 \text{ GeV}$

Beijing Normal University

$$m_2)^2 \Big],$$

 $\chi^2(m_h, m_Z)$

 $\mathcal{L} = 3 \text{ ab}^{-1}$

	· · · ·			
$\sigma~[{ m ab}]$	pre-cuts	$m_{bb}~{ m cut}$	HHCUT	$M_{ m re}$
Sig.	484.4	261.5	226.5	2
u u h Z	1163.1	168.6	97.8	Q
u u ZZ	1557.9	121.2	36.7	
$ u W^{\pm}h$	560.7	26.2	17.2	1
$ u W^{\pm}Z $	492.3	12.3	9.3	
Bkg.	_	-	-	1

 $\kappa_{hhWW} = \kappa_{hWW} = 1$

Discovery and Exclusion Potential on κ_{hhWW}

Beijing Normal University

 $0.96 < \kappa_{hww} < 1.04$; arXiv:2207.03862

- 5σ discovery region $\kappa_{hhww} < 0.86$ or $\kappa_{hhww} > 1.32$
- 2σ exclusion region $\kappa_{hhww} < 0.88$ or $\kappa_{hhww} > 1.14$

