29th Mini-Workshop on the Frontier of LHC, Fuzhou, Dec. 13-16, 2024

高能物 22 MF 完中いい Center for High Energy Physics, PKU

Transverse spin effects of light-quark dipole moments at colliders

Xin-Kai Wen (文新锴)

(xinkaiwen@pku.edu.cn)

Peking University

Base on: **Xin-Kai Wen**, Bin Yan, Zhite Yu and C.-P. Yuan *arXiv:* 2411.13845, 2408.07255, 2307.05236 (*Phys.Rev.Lett.* **131** (2023) 24, 241801)

2024/12/15 @ FZ.U, Fuzhou, Fujian

Dipole Moments

Its investigation is essential for internal structure and intrinsic property of particles

Elementary $\mu_e = +2.002319 \,\mu_B$ $\mu_\mu = +2.002332 \,\mu_B$ $\mu_p = +2.792847 \,\mu_N$ $\mu_n = -1.913043 \,\mu_N$

How about:

Electroweak (Weak) dipole moments? Light-quark dipole moments?

$$-\mu_{f} \frac{\vec{S}}{|\vec{S}|} \cdot \vec{B} \iff Q_{f} e(\bar{f} \gamma_{\mu} f) A^{\mu} + a_{f} \frac{Q_{f} e}{4 m_{f}} (\bar{f} \sigma_{\mu\nu} f) F^{\mu\nu}$$
$$-d_{f} \frac{\vec{S}}{|\vec{S}|} \cdot \vec{E} \iff + d_{f} \frac{i}{2} (\bar{f} \sigma_{\mu\nu} \gamma_{5} f) F^{\mu\nu}$$
$$\mu_{f} = g_{f} \frac{Q_{f} e}{2 m_{f}} \qquad (g_{f} - 2) = 2 a_{f}$$

Dipole Moments

D.P. Aguillard et al., (Muon g-2), Phys. Rev. Lett. 131 (2023) 16

X. Li, B. Yan, C.-P. Yuan, arXiv: 2405.04069

Its measurement is crucial for testing the Standard Model and probing New Physics

Dipole Moments

Chirality-flip of fermion \Rightarrow Difficult to probe at colliders

R. Boughezal et al. Phys. Rev.D 104 (2021), 9, 095022 Phys. Rev.D 108 (2023) 7, 076008

Lepton Dipole Moments

Transverse spin effect of initial leptons \Rightarrow Interference of the different helicity amplitudes

Xin-Kai Wen (Peking University)

Light-quark Dipole Moments

QCD color confinement prevents a direct measurement of the quark dipole moments

Nucleon dipole moment measurements?

nonperturbative input of nucleon spin structure!

S. Blundell, J. Griffith, J. Sapirstein, Phys. Rev. D 86 (2012) 2, 025023

Particle Data Group, Phys.Rev.D 110 (2024) 3, 030001

Asymptotic freedom

Transversity PDFs or FFs

H.-L. Wang, **X.-K. Wen**, H. Xing and B. Yan, *Phys.Rev.D* **109** (2024) 9, 095025

Independent of hadron spin? Dihadron!

Light-quark Dipole Moments @ EIC

Light-quark dipole moments produce transverse spin of quarks via interference

 $\frac{d\sigma}{dx \, dy \, dz \, dM_h \, d\phi_R} = \frac{N}{2\pi} \sum_q f_q(x, Q) \left[D_{h_1 h_2/q}(z, M_h; Q) - (\boldsymbol{s}_{T,q}(x, Q) \times \hat{\boldsymbol{R}}_T)^z H_{h_1 h_2/q}(z, M_h; Q) \right] C_q(x, Q)$

$$(\boldsymbol{s}_{T,q} \times \hat{\boldsymbol{R}}_T)^z = s_q^x \sin \phi_R - s_q^y \cos \phi_R$$

Dihadron chiral-odd interference fragmentation function projects out transverse spin of quarks with azimuthal asymmetry Xin-Kai Wen, Bin Yan, Zhite Yu and C.-P. Yuan, arXiv: 2408.07255

Xin-Kai Wen (Peking University)

Light-quark Dipole Moments @ EIC

$$(\boldsymbol{s}_{T,q} \times \hat{\boldsymbol{R}}_T)^z = s_q^x \sin \phi_R - s_q^y \cos \phi_R$$

$$\frac{2\pi}{\sigma_{\rm tot}} \frac{d\sigma}{d\phi_R} = 1 + A_R \sin \phi_R + A_I \cos \phi_R$$

$$s_q^x = \frac{2}{C_q} \left(w_\gamma^q \operatorname{Re} \Gamma_\gamma^q + w_Z^q \operatorname{Re} \Gamma_Z^q \right)$$
$$s_q^y = \frac{2}{C_q} \left(w_\gamma^q \operatorname{Im} \Gamma_\gamma^q + w_Z^q \operatorname{Im} \Gamma_Z^q \right)$$

Requiring parity-violation effects

- ➤ the electron longitudinal polarization
- the Z boson axial couplings

Exclusive for quark dipole moments and independent of hadron spin but flat direction ?

Light-quark Dipole Moments $(a) e^+e^-$ colliders

dihadron-hadron pairs disentangle the up and down quark dipole moments exclusively, giving individual and stronger constraints.

 $\frac{d\sigma}{dy\,dz\,d\bar{z}\,dM_h\,d\phi_R} = \frac{1}{32\pi^2 s} \sum_{q,\,q\to\bar{q}} C_q(y)\,D_{\bar{q}}^{h'}(\bar{z})$ $C_q s_q^x = 2 \left(w_\gamma^q \operatorname{Re} \Gamma_\gamma^q + w_Z^q \operatorname{Re} \Gamma_Z^q \right)$ $C_q s^y_q = 2 \left(w^q_\gamma \operatorname{Im} \Gamma^q_\gamma + w^q_Z \operatorname{Im} \Gamma^q_Z \right)$ $\times \left[D_a^{h_1h_2}(z, M_h) - (\boldsymbol{s}_{T,q}(y) \times \hat{\boldsymbol{R}}_T)^z H_a^{h_1h_2}(z, M_h) \right]$ $(\boldsymbol{s}_{T,q} \times \boldsymbol{R}_T)^z = s_a^x \sin \phi_R - s_q^y \cos \phi_R$ menting $\chi^R \gamma^*/Z$ $R_{ extsf{T}}$

Xin-Kai Wen, Bin Yan, Zhite Yu and C.-P. Yuan, arXiv: 2411.13845

Light-quark Dipole Moments (a) e^+e^- colliders

Requiring parity-violation effects, the electron longitudinal polarization and C.M. energy effectively distinguish the photon and Z-boson dipole moments separately

$$C_q s_q^x = 2 \left(w_{\gamma}^q \operatorname{Re} \Gamma_{\gamma}^q + w_Z^q \operatorname{Re} \Gamma_Z^q \right)$$
$$C_q s_q^y = 2 \left(w_{\gamma}^q \operatorname{Im} \Gamma_{\gamma}^q + w_Z^q \operatorname{Im} \Gamma_Z^q \right)$$

Photon dipole:

- \succ Low energy
- Electron longitudinal polarization

Z-boson dipole:

- Z-pole energy
- Z boson axial vector couplings

Light-quark Dipole Moments $(a) e^+e^-$ colliders

Flavor relations due to SM couplings, isospin and charge conjugation symmetries different channels provide different constraints, enabling them to be separately constrained

Summary

- ✓ Measuring light-quark dipole moments is crucial for testing the Standard Model and probing New Physics, but quark cannot be directly seen due to QCD confinement
- ✓ Rate observables are difficult to bound them since their leading effect is from $1/\Lambda^4$
- ✓ Light-quark dipole moments linearly produce transverse spin effect of quarks
- ✓ Dihadron azimuthal asymmetry projects out transverse spin of quarks via interference fragmentation function, exclusively probe light-quark dipole moments from $1/\Lambda^2$, independent of hadron spin and without impact from other NP
- ✓ By combining all possible channels of hadron-dihadron, we resolve the degeneracy issue of the up and down quark dipole moments, giving individual constraints
- Both real and imaginary parts can be well constrained, offering a new opportunity for directly probing potential CP-violating effects.
- ✓ Our bounds are much stronger than other approaches by $1\sim2$ orders of magnitude

Thank you