Probe the anomalous electromagnetic moments of the tau lepton at LHC

The 29th LHC mini-workshop, 福州 2024年12月13-16日

Outline

- Introduction
- **D**Photon-induced $\tau\tau$ production
- **ATLAS/CMS** heavy ion measurements
- **CMS** pp measurement
- Beyond ATLAS/CMS

Summary

Lepton anomalous magnetic moment a_I

$$\boldsymbol{\mu} = g \frac{e}{2m} \mathbf{S} \qquad a_l = (g-2)/2$$

- measurements of a_e in Penning traps are the "most precise in physics"
- measurements of a_{μ} in storage rings are in longstanding tension with theoretical computations

Constrain tau EM moments a_{τ} & d_{τ}

If BSM effects scale with the m_l^2 , deviations from SM could be 280 times larger than for a_μ

a_τ & electric dipole moment *d_τ* can be probed from *γττ* vertex

• $\gamma\gamma \rightarrow \tau\tau$ process contains 2 $\gamma\tau\tau$ vertices

- contraints on electromagnetic moments $a_{\tau} \& d_{\tau}$ from form factors or SMEFT
- in the SM: $d_{\tau} \sim 10^{-37}$ ecm via CP/T violation in CKM, but could be much larger in BSMs
- Best constraints on a_{τ} and d_{τ} are both from e⁺e⁻ collisions:
 - $-0.052 < a_{\tau} < 0.013$, 95% CL (<u>DELPHI@LEP</u>)
 - − $-1.85 < d_{\tau} < 0.61 \text{ x } 10-17 \text{ ecm}$, 95% CL (Belle)

Photon-induced $\tau\tau$ production

Photon-induced process: two charged particles (e.g. protons or ions) pass each other at relativistic velocities, they generate intense electromagnetic fields \rightarrow photon-photon collisions can happen

PLB 407 (1997) 341

$\gamma\gamma \rightarrow \tau\tau$ study at ATLAS/CMS

$\gamma\gamma \rightarrow \tau\tau$ measurements in PbPb collisions:CMS22

CMS(2022)

PRL 131(2023) 151803

- first observed of $\gamma\gamma \rightarrow \tau\tau$ in PbPb by CMS & ATLAS in 2022
- $\sigma \propto Z^4$ enhancement
- clean channel: small backgrounds
- phase space $m_{\tau\tau}$ < 40 GeV

$\gamma\gamma \rightarrow \tau\tau$ measurements in PbPb collisions: ATLAS

8

$\gamma\gamma \rightarrow \tau\tau$ measurements in PbPb collisions:CMS(new)

✓ With 2018 data, integrated lumi up to 1.70 nb⁻¹ (x4)

- ✓ addition of three tau pair decay modes
- ✓ incorporation of both cross section and kinematic distributions

$\gamma\gamma \rightarrow \tau\tau$ signature in pp collisions • 2 τ leptons

- opposite charge sign
- back-to-back: $|\Delta \phi| \approx \pi$
- $\underline{\tau \text{ decays}}$: $\underline{\tau \tau \text{ decays}}$:

 no hadronic activity close to *ττ* vertex

Background in signal region

MC simulation

- Drell–Yan $(Z/\gamma^* \rightarrow \ell \ell)$: dominant at low mass
- exclusive $\gamma\gamma \rightarrow ee$, $\mu\mu$, WW production
- inclusive WW production (small)
- data-driven: misidentified hadronic jets
 - $j \rightarrow \tau_{\rm h}$: $e\tau_{\rm h}$, $\mu\tau_{\rm h} \& \tau_{\rm h}\tau_{\rm h}$ channels
 - $j \rightarrow e/\mu$: $e\mu$ channels

LHCMiniWorkshop Fuzhou

hadronic $au_{
m h}$ jet

hadronic quark/gluon jet

CMS $\gamma \gamma \rightarrow \tau \tau$ in pp: Strategy

- select events with opposite sign $\tau^+\tau^-$
 - \succ combine 4 $\tau\tau$ final states: $e\mu$, $e\tau_h$, $\mu\tau_h$, $\tau_h\tau_h$
 - > exclusivity cuts:
 - back-to-back: $A = 1 \frac{|\Delta \phi|}{\pi} < 0.015$
 - low activity around $\tau\tau$ vertex: N_{tracks}=0 or 1 in 0.1 cm window

 $\tau\tau$ decay channels:

 $au_{
m h} au_{
m h}$

42%

 ${}^{
m ee}_{3\%}{}^{
m e\mu}_{6\%}{}^{
m \mu\mu}_{3\%}$

 $\mu au_{
m h}$

23%

 $rac{\mathrm{e} au_\mathrm{h}}{23\%}$

- use $\mu\mu$ events (Z $\rightarrow \mu\mu$, $\gamma\gamma \rightarrow \mu\mu$) to measure corrections to simulation
- measure $\gamma \gamma \rightarrow \tau \tau$ from observed $m_{\tau \tau}$ shape & yield in 50 < $m_{\tau \tau}^{vis}$ < 500 GeV:
 - above e⁺e⁻ & PbPb ($m_{\tau\tau} \lesssim 50 \text{ GeV}$)

• $m_{\tau\tau}^{vis} \lesssim 500 \text{ GeV}$ to ensure unitarity in signal samples

SR with N_{tracks} = 0

- after maximum-likelihood fit to observed data
- assuming SM $a_{\tau} \& d_{\tau}$
- signal clearly visible in high $m_{\rm vis}(au au)$ bins

First observation of $\gamma\gamma \rightarrow \tau\tau$ in pp collisions

- combined observed significance of 5.3 σ (6.5 σ expected) assuming SM a_{τ}
 - \Rightarrow first observation of $\gamma\gamma \rightarrow \tau\tau$ in pp !
- combined signal strength

r = 0.75 +0.21 –0.18

- w.r.t. gammaUPC elastic prediction × rescaling measured in $\mu\mu$ data
- Fiducial cross section: 12.4^{+3.8}-3.1 fb
- dominant systematic uncertainties:
 - elastic rescaling to $\gamma\gamma \rightarrow \tau\tau$
 - N^{HS}_{tracks} corrections to Drell–Yan

CMS Experiment at the LHC, CERN Data recorded: 2018-May-01 13:53:45.602112 GMT Run / Event / LS: 315512 / 65277407 / 69

 $\pi^+\pi^-\pi^+$

Constraints on $a_{ au}$ and $d_{ au}$

Constraints on Wilson coefficients

recast results to make exclusion of $C_{\tau B}/\Lambda^2$ vs. $C_{\tau W}/\Lambda^2$:

⁻] ₁₇

Beyond ATLAS/CMS

LHCMiniWorkshop Fuzhou

Summary

- Tau g-2 and EDM has a strong potential to probe new physics
- ATLAS/CMS observed $\gamma\gamma \rightarrow \tau\tau$ in PbPb collisions
 - also used to constrain the tau g-2, with similar precision as LEP
- CMS made the first observation of $\gamma\gamma \rightarrow \tau\tau$ in pp collisions(5.3 σ)
 - Full Run-2 data, 4 au au final states, constrain both $a_{ au}$ & $d_{ au}$ with an EFT approach
 - Gains large improvement on tau g-2 and also good tau EDM result to zero q2
- These open a new avenue at LHC, even greater potential in future

Baseline selection criteria for different final states

	eμ	$e \tau_h$	$\mu au_{ m h}$	$\tau_{\rm h} \tau_{\rm h}$	μμ
$p_{\rm T}^{\rm e}$ (GeV)	> 15/24	> 25–33			—
$ \eta^{\mathrm{e}} $	< 2.5	< 2.1 - 2.5	—		—
$p_{\rm T}^{\mu}$ (GeV)	> 24/15		> 21–29		> 26-29/10
$ \eta^{\mu} $	< 2.4		< 2.1 - 2.4		< 2.4
$p_{\rm T}^{ au_{\rm h}}$ (GeV)		> 30 - 35	> 30–32	> 40	—
$ \eta^{ au_{ m h}} $	—	< 2.1 - 2.3	< 2.1 - 2.3	< 2.1	—
$m_{\mu\mu}$ (GeV)	—	—	—	—	> 50
OS	yes	yes	yes	yes	yes
$ d_z(\ell,\ell') $ (cm)	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
$\Delta R(\ell,\ell')$	> 0.5	> 0.5	> 0.5	> 0.5	> 0.5
$m_{\rm T}({\rm e}/\mu p_{\rm T}, \vec{p}_{\rm T}^{\rm miss})$ (GeV)	_	< 75	< 75		_

2024/12/15