

# CEPC Muon Detector --- design and status

Xiaolong Wang
(for the Muon Detector Group)
Fudan University
Tuesday Meeting, 09/03/2024

#### Functions expected from the muon detector

Muon detector, the outermost detector with the largest volume, clean environment.

Production of Higgs:  $e^+e^- \to ZH$ , Higgs could be determined in the recoil of  $Z \to \mu^+\mu^-$ .

- Special determination of muon with  $p \approx 40 \text{ GeV}/c$ . (High momentum muon)

Muons provide in many theoretical models a characteristic signature for new physics.

Muon detector is designed for muon identification, but not limited to this.

- Could be used to detect the leakage of HCAL.
- Can be used for trigger, like in ATLAS.
- Could be useful for additional T0 determination.  $\sigma(T0) = \sigma(T_{hit})/\sqrt{n_{hits}}$
- Can be used to search for Long-lived particles.
- Functions: muon ID, search for NP, leakage of HCAL, trigger and timing information.



#### Key requirements:

- Muon ID
- Track reconstruction

#### **Scenarios**

- Scenario #1: 8 layers of barrel, 6 layers of endcaps
  - Cost 27M
- Scenario #2: all 8 layers
  - Cost 30M; better performance in endcaps
- Scenario #3: all 6 layers
  - Cost 25M; OK for muon ID, tracking will be difficult in some area
- Scenario #4: all 4 layers
  - Save budget, but it only works for muon ID, and 50% in barrel has only 3 superlayers. Width of iron plate is ~20cm, too thick.

# Current emergency for the muon group:

- ➤ Software and simulation → performance study
- ➤ Design of electronic system, FEE & BEE
  - Requirements from the detector
  - Design and performance
  - Consistent with the frame of CEPC electronics

#### Software update: simulation

- New baseline geometry implemented in CEPCSW.
  - 8 layers for the Barrel section and 6 layers for the Endcap section, as discussed in last week's talk.
  - Define as baseline for following detector optimization.
  - Bug fix: fixed an issue of missing simulated muon detector tracker hits in the output collections.
  - Merge request Ready to be merged.



#### Software update: digitization

MIP peak distribution in unit of ADC counts

- Digitization from sim hit -> reco hit:
  - Plan to skip simulation of optical photon propagation step.
- Steps:
  - Retrieve energy deposition and distance to SiPM for each hit in the simulation.
  - Convert the energy to the number of MIPs.
  - Using distance to SiPM to get number of p.e. per MIP according to real cosmic ray measurements Now we
    have number of MIPs for each sim hit.
  - Randomly generate number of ADC counts for 1 MIP according to real cosmic ray measurements.
  - Convert number of MIPS to number of ADC counts for each sim hit.



[2024 JINST 19 P06020]



#### Plan for further detector optimization

- Performance study!
- Further optimization of the number of layers and scintillator thickness.
- Enhancement of muon identification and reconstruction algorithms.
- Continued improvements in the simulation and digitization processes.

#### The electronic system

- Invite 张杰 to join the muon group for discussion on the design of the electronic system.
- Discussion on the design for JUNO-TAO, and take this as a reference.
  - Time resolution, FEE, power consumption, space, temperature, mechanic support, COST, etc.





Al frame is ready.





New design of scintillator bar is almost ready. Will test soon.

#### **Test on TOT**

- Start testing on TOT
  - PCB: pream(shaping)+TOT





Need to improve the testing on TOT.

#### Considerations of the backgrounds

- Very low level of the CR backgrounds, with the earth shield of > 50m.
- Reference to the beam backgrounds in Belle II.

| Barrel<br>Layer | Expected<br>Hit Rate<br>(Hz/cm <sup>2</sup> ) | Expected<br>RPC<br>Efficiency | Bad-case<br>Hit Rate<br>(Hz/cm <sup>2</sup> ) | Bad-case<br>RPC<br>Efficiency | Worst-case<br>Hit Rate<br>$(Hz/cm^2)$ | Worst-case<br>RPC<br>Efficiency |
|-----------------|-----------------------------------------------|-------------------------------|-----------------------------------------------|-------------------------------|---------------------------------------|---------------------------------|
| 0               | —scintillators—                               |                               | —scintillators—                               |                               | —scintillators—                       |                                 |
| 1               | —scintillators—                               |                               | —scintillators—                               |                               | —scintillators—                       |                                 |
| 2               | 2.6                                           | 0.86                          | 26                                            | 0.00                          | 260                                   | 0.00                            |
| 3               | 1.7                                           | 0.91                          | 17                                            | 0.14                          | 170                                   | 0.00                            |
| 4               | 0.9                                           | 0.95                          | 9                                             | 0.54                          | 90                                    | 0.00                            |
| 5               | 0.5                                           | 0.97                          | 5                                             | 0.54                          | 50                                    | 0.00                            |
| 6               | 0.5                                           | 0.97                          | 5                                             | 0.54                          | 50                                    | 0.00                            |
| 7               | 0.3                                           | 0.98                          | 3                                             | 0.84                          | 30                                    | 0.00                            |
| 8               | 0.5                                           | 0.97                          | 5                                             | 0.54                          | 50                                    | 0.00                            |
| 9               | 0.2                                           | 0.98                          | 2                                             | 0.89                          | 20                                    | 0.00                            |
| 10              | 0.2                                           | 0.98                          | 2                                             | 0.89                          | 20                                    | 0.00                            |
| 11              | 0.1                                           | 0.99                          | 1                                             | 0.94                          | 10                                    | 0.49                            |
| 12              | 0.1                                           | 0.99                          | 1                                             | 0.94                          | 10                                    | 0.49                            |
| 13              | 0.1                                           | 0.99                          | 1                                             | 0.94                          | 10                                    | 0.49                            |
| 14              | 0.2                                           | 0.98                          | 1                                             | 0.94                          | 10                                    | 0.49                            |

Table 2: Neutron flux, hit rate per unit area, and instantaneous efficiency in each layer of the barrel KLM from the late-2020 simulations of beam-induced neutron backgrounds at the SuperKEKB design luminosity of  $6 \times 10^{35} \, \mathrm{cm}^{-2} \mathrm{s}^{-1}$ . Here, the Belle II hybrid configuration replaces the RPCs in the two innermost layers with scintillators and neutron-absorbing polyethylene sheets.

For a 4m long bar, the hit rate might be 160Hz. For the 'bad-case', it would be 1.6kHz!



## Thank you!

### **Backgrounds from CR**

