第三届高能物理理论与实验融合发展研讨会, Nov 1-4 2024

# Flavor physics in the continuum using CLQCD ensembles

**Yi-Bo Yang** 

With Bo-Lun Hu, et.al.,

For CLQCD collaboration













### Quark mass





- interaction.

#### and CKM matrix elements

Higgs boson provides very different coupling to six quark flavors;

Light quark mass can not be determined by experiment directly;

• Weak decay between different flavors also requires inputs from strong



$$|V_{cs}| = 0.975(13)_{lat}(11)_{exp}$$
  $\leftarrow$   $f_{D_s^+}|V_{cs}| = 243.5(2.7)_{exp}$ 





#### and QCD



- QCD is non-perturbative at the hadron scale;
- Lattice QCD can provide accurate first principle predictions on the QCD features of hadron.









- Generate those ensembles will take several years

Nature 593 7857, 51-55 (2021)

a<sup>LO-HVP</sup> (×10<sup>10</sup>)





Z.-H. Hu, B.-L. Hu, J.-H. Wang, et. al., CLQCD, PRD109(2024) 054507

#### **CLQCD** ensembles

Α

a

14 ensembles with more than 5,000 configurations in total:

- 5 lattice spacings from 0.05 fm to 0.11 fm;
- 7 pion masses from 130 MeV to 350 MeV;
- 4 Volumes from 2.5 fm to 5.0fm.
- More ensembles are in production;

Work published with CLQCD ensembles:

- HB Yan et al PRL accepted (2024)
- Phys.Rev.D 7, 074510 (2024) • Y Meng et al
- Phys.Rev.D 109.054507 (2024) • ZC Hu et al
  - Phys.Rev.D 109 7, 074511(2024)
  - Sci.China Phys.Mech.Astron. 67 1,
- 211011(**2024**) • H Liu et al Phys.Rev.D 109 3, 036037(**2024**)
- H Liu et al

• Y Meng et al

• H Liu et al

• DJ Zhao et al

Phys.Lett.B 841 137941(2023) Phys.Rev.D 107 9, L091501(2023)

• QA Zhang et al Chin.Phys.C 46 (2022)



### PCAC quark masses



#### Definition

$$\frac{S}{S} = \frac{m_{\text{PS}} \sum_{\vec{x}} \langle A_4(\vec{x}, t) P^{\dagger}(\vec{0}, 0) \rangle}{2 \sum_{\vec{x}} \langle P(\vec{x}, t) P^{\dagger}(\vec{0}, 0) \rangle} \Big|_{t \to \infty}$$

$$\mathcal{O}(\frac{m_{\pi}^2}{16\pi^2 F^2}) \sim \frac{m_{\pi}^2}{5 \text{ GeV}}$$

Defining quark mass from the PCAC relation can avoid the additive renormalization of the clover fermion action:

- PCAC quark mass defined from different PS hadron can differ by ~1% at the coarsest lattice spacing ~0.11 fm;
- And becomes consistent with each other at 0.1% level after the continuum extrapolation.

### Renormalized quark masses Impact of the renormalization



- $m_{\pi}^2/m_q \sim \Sigma/F^2$  which is insensitive to the quark mass, with the partially quenching effect subtracted;
- The PCAC mass  $m_q^{PC} = \frac{\langle 0 | \partial_4 A_4 | PS \rangle}{2 \langle 0 | P | PS \rangle}$  has obvious 1/a and action dependences:
- 1. Smaller with large intrinsic scale 1/a;
- 2. Very sensitive to the fermion action.
- **RI/MOM** renormalization eliminates both the dependences and makes  $m_{\pi}^2/m_q^{MS}$  of all the ensembles on a similar curve.





### Quark mass

P.Zyla et,al, PTEP(2020)083C01 (PDG2020):

- $m_p = 938.27 \text{ MeV} = m_{p,\text{OCD}} + 1.00(16) \text{ MeV} + \dots;$
- $m_n = 939.57$  MeV;
- $m_{\pi}^0 = 134.98$  MeV;
- $m_{\pi}^{+} = 139.57 \text{ MeV} = m_{\pi}^{0} + 4.53(6) \text{ MeV} + \dots;$ X. Feng, et,al. Phys.Rev.Lett.128(2022)062003
- $m_K^0 = 497.61(1) \text{ MeV} = m_{K.OCD}^0 + 0.17(02) \text{ MeV} + \dots;$
- $m_K^+ = 493.68(2) \text{ MeV} = m_{K,\text{OCD}}^+ + 2.24(15) \text{ MeV} + \dots$

D. Giusti, et,al. PRD95(2017)114504

#### Light and strange quark masses







### Renormalized quark masses



D.J. Zhao, et. al.,  $\chi$ QCD, in preparation

#### Charm quark mass

Based on the  $a^2 + a^4$ extrapolation:

- The impact of unphysical light and strange quark masses have been corrected based on the global fit.
- Such a value is similar to the current lattice averages within  $\sim 2\%$ .



### Charmed meson spectrum

$$m_{D_s}^{\text{QCD}} = m_{D_s}^{\text{phys}} - \Delta^{\text{QED}} m_{D_s} = 1966.7(1.5) \text{ MeV}.$$

RM123, Phys.Rev.D100 (2019) 034514

Input to determine the charm quark mass



#### **Open charm cases**

- $m_D$  is almost constant at different lattice spacing, with  $m_D^{\pm} - m_D^0 = 2.9(2)_{\rm QCD} + 2.4(5)_{\rm QED} = 5.3(2)(5)$  MeV; RM123, Phys.Rev.D95(2017) 114504
- Agree with the PDG value 4.8(1) MeV well.
- Both  $m_D^*$  and  $m_{D_s}^*$  have obvious lattice spacing dependence and the continuum extrapolated values agree with PDG well.



### Charmed meson spectrum

$$m_{D_s}^{\text{QCD}} = m_{D_s}^{\text{phys}} - \Delta^{\text{QED}} m_{D_s} = 1966.7(1.5) \text{ MeV}.$$

RM123, Phys.Rev.D100 (2019) 034514

Input to determine the charm quark mass



#### charmonium cases

- $m_{J/\psi}$  agrees with PDG well but  $m_{\eta_{a}}$  is a few MeV lower;
- $m_{J/\psi} m_{\eta_c} = 116(3)$  MeV agree with previous HPQCD pure QCD prediction 119(1) MeV.
- P-wave charmonium masses also agree with PDG well, with  $m_{1P} - m_{1S} = 461(19)$  MeV.









## Toward the bottom physics

$$S_{Q} = a^{4} \sum_{x} \bar{Q} \mathscr{M} Q, \ \mathscr{M} = \left[ m_{Q} + \gamma_{4} \nabla_{4} - \frac{a}{2} \nabla_{4}^{2} + \nu \sum_{i=1}^{3} (\gamma_{i} \nabla_{i} - \frac{a}{2} \nabla_{i}^{2}) - \frac{1 + \nu}{4u_{0}^{3}} \right]$$

| Ensemble | $a({ m fm})$ | $\tilde{L}^3 \times \tilde{T}$ | $m_{\pi}({ m MeV})$ | $N_{\rm cfg} \times N_{src}$ | ν    | $m_Q$ |   |
|----------|--------------|--------------------------------|---------------------|------------------------------|------|-------|---|
| C24P29   | 0.10521(11)  | $24^3 \times 72$               | 292.3(1.0)          | $25 \times 3$                | 3.68 | 7.42  | ( |
| E28P35   | 0.08970(26)  | $28^3 \times 64$               | 351.4(1.4)          | $24 \times 4$                | 2.75 | 4.87  | ( |
| F32P30   | 0.07751(14)  | $32^3 \times 96$               | 300.4(1.2)          | $24 \times 3$                | 2.05 | 3.48  | ( |
| G36P29   | 0.06884(18)  | $36^3 \times 108$              | 297.2(0.9)          | $25 \times 4$                | 1.87 | 2.64  | ( |
| H48P32   | 0.05198(20)  | $48^3 \times 144$              | 316.6(1.0)          | $25 \times 3$                | 1.35 | 1.52  | ( |

- Determine the bare bottom quark mass using the physical  $\Upsilon$  mass using the anisotropic action;
- The anisotropic rate  $\nu$  is determined by requiring the dispersion relation of  $\Upsilon$ to be the same as that in the continuum;
- $\nu$  approaches 1 in the continuum limit with  $\mathcal{O}(a^2)$  corrections, while careful estimate of its uncertainty is in progress.

#### anisotropic action



H.-Y. Du, et. al., CLQCD, in preparation



## **Toward the bottom physics**

$$S_Q = a^4 \sum_x \bar{Q} \mathcal{M}Q, \ \mathcal{M} = \left[ m_Q + \gamma_4 \nabla_4 - \frac{a}{2} \nabla_4^2 + \nu \sum_{i=1}^3 \left( \gamma_i \nabla_i - \frac{a}{2} \nabla_i^2 \right) - \frac{1 + \nu}{4u_0^3} \right]$$



### Hadron spectrum

- Based on this action, the  $B_{(s/c)}^{(*)}$  masses agree with experiment within sub-percent statistical uncertainty;
- The hyperfine splitting  $m_{\Upsilon} - m_{\eta_h}$  suffers from sizable discretization error and requires input from smaller lattice spacing.





### **Decay constants**





 Additional input likes the form factor of the semi-leptonic decay  $K^0 \rightarrow \pi^- l \nu$  is required to determine  $|V_{ud(s)}|$  directly and verify the unitarity of CKM.

Z.C. Hu, B.L. Hu, J.H. Wang, et. al., CLQCD, PRD109(2024) 054507





### **Decay constants**



#### **Open charm cases**

$$f_{D^{+}} = 0.2113(33)_{\text{lat}} \text{ MeV}$$

$$\downarrow$$

$$f_{D^{+}} | V_{cd} | = 45.8(1.1)_{\text{exp}} \text{ MeV} \longrightarrow | V_{cd} | = 0.2168(33)_{\text{lat}}(53)_{\text{lat}}(53)_{\text{lat}}(53)_{\text{lat}}(53)_{\text{lat}}(53)_{\text{lat}} | V_{cs} | = 243.5(2.7)_{\text{exp}} \text{ MeV} \longrightarrow | V_{cs} | = 0.975(13)_{\text{lat}}(11)_{\text{lat}}(11)_{\text{lat}}(11)_{\text{lat}}(11)_{\text{lat}}(11)_{\text{lat}}(11)_{\text{lat}}(11)_{\text{lat}}(11)_{\text{lat}}(11)_{\text{lat}}(11)_{\text{lat}}(11)_{\text{lat}}(11)_{\text{lat}}(11)_{\text{lat}}(11)_{\text{lat}}(11)_{\text{lat}}(11)_{\text{lat}}(11)_{\text{lat}}(11)_{\text{lat}}(11)_{\text{lat}}(11)_{\text{lat}}(11)_{\text{lat}}(11)_{\text{lat}}(11)_{\text{lat}}(11)_{\text{lat}}(11)_{\text{lat}}(11)_{\text{lat}}(11)_{\text{lat}}(11)_{\text{lat}}(11)_{\text{lat}}(11)_{\text{lat}}(11)_{\text{lat}}(11)_{\text{lat}}(11)_{\text{lat}}(11)_{\text{lat}}(11)_{\text{lat}}(11)_{\text{lat}}(11)_{\text{lat}}(11)_{\text{lat}}(11)_{\text{lat}}(11)_{\text{lat}}(11)_{\text{lat}}(11)_{\text{lat}}(11)_{\text{lat}}(11)_{\text{lat}}(11)_{\text{lat}}(11)_{\text{lat}}(11)_{\text{lat}}(11)_{\text{lat}}(11)_{\text{lat}}(11)_{\text{lat}}(11)_{\text{lat}}(11)_{\text{lat}}(11)_{\text{lat}}(11)_{\text{lat}}(11)_{\text{lat}}(11)_{\text{lat}}(11)_{\text{lat}}(11)_{\text{lat}}(11)_{\text{lat}}(11)_{\text{lat}}(11)_{\text{lat}}(11)_{\text{lat}}(11)_{\text{lat}}(11)_{\text{lat}}(11)_{\text{lat}}(11)_{\text{lat}}(11)_{\text{lat}}(11)_{\text{lat}}(11)_{\text{lat}}(11)_{\text{lat}}(11)_{\text{lat}}(11)_{\text{lat}}(11)_{\text{lat}}(11)_{\text{lat}}(11)_{\text{lat}}(11)_{\text{lat}}(11)_{\text{lat}}(11)_{\text{lat}}(11)_{\text{lat}}(11)_{\text{lat}}(11)_{\text{lat}}(11)_{\text{lat}}(11)_{\text{lat}}(11)_{\text{lat}}(11)_{\text{lat}}(11)_{\text{lat}}(11)_{\text{lat}}(11)_{\text{lat}}(11)_{\text{lat}}(11)_{\text{lat}}(11)_{\text{lat}}(11)_{\text{lat}}(11)_{\text{lat}}(11)_{\text{lat}}(11)_{\text{lat}}(11)_{\text{lat}}(11)_{\text{lat}}(11)_{\text{lat}}(11)_{\text{lat}}(11)_{\text{lat}}(11)_{\text{lat}}(11)_{\text{lat}}(11)_{\text{lat}}(11)_{\text{lat}}(11)_{\text{lat}}(11)_{\text{lat}}(11)_{\text{lat}}(11)_{\text{lat}}(11)_{\text{lat}}(11)_{\text{lat}}(11)_{\text{lat}}(11)_{\text{lat}}(11)_{\text{lat}}(11)_{\text{lat}}(11)_{\text{lat}}(11)_{\text{lat}}(11)_{\text{lat}}(11)_{\text{lat}}(11)_{\text{lat}}(11)_{\text{lat}}(11)_{\text{lat}}(11)_{\text{lat}}(11)_{\text{lat}}(11)_{\text{lat}}(11)_{\text{lat}}(11)_{\text{lat}}(11)_{\text{lat}}(11)_{\text{lat}}(11)_{\text{lat}}(11)_{\text{lat}}(11)_{\text{lat}}(11)_{\text{lat}}(11)_{\text{lat}}(11)_{\text{lat}}(11)_{\text{lat}}(11)_{\text{lat}}(11)_{$$

- Verified the unitarity of CKM matrix elements involving the charm quark:  $|V_{cd}|^2 + |V_{cs}|^2 + |V_{cb}|^2 = 0.999(25)(22).$
- Also provide the most precise  $f_{D^*}$  and  $f_{D^*}$ so far.

Hai-Yang Du, B.L. Hu, et. al., CLQCD, 2408.03548













### **Summary on CLQCD determinations** of Stand model parameters

$$\frac{f_{K}}{f_{\pi}} = 1.1907(76)_{\text{lat}}$$

$$\downarrow$$

$$|V_{ud}| = 0.9740(03)_{\text{lat}}(0)$$

$$|V_{us}| = 0.2265(14)_{\text{lat}}(0)$$

$$1 = |V_{ud}|^2 + |V_{us}^2| + |V_{ub}|^2 = |V_{ud}|^2 + |V_{us}^2| + 0.00$$











### **Baryon spectrum**

| Symbol | $\tilde{L}^3 	imes \tilde{T}$ | $\hat{eta}$ | $a~({ m fm})$   | $	ilde{m}^{ m b}_l$ | $	ilde{m}^{ m b}_s$ | $m_{\pi}({ m MeV})$ | $m_{\eta_s}({ m MeV})$ | $m_{\pi}$ |
|--------|-------------------------------|-------------|-----------------|---------------------|---------------------|---------------------|------------------------|-----------|
| C24P34 | $24^3 \times 64$              | 6.20        | 0.10521(11)(62) | -0.2770             | -0.2310             | 340.2(1.7)          | 748.61(75)             | 4.3       |
| C24P29 | $24^3 \times 72$              | 6.20        | 0.10521(11)(62) | -0.2770             | -0.2400             | 292.3(1.0)          | 657.83(64)             | 3.7       |
| C32P29 | $32^3 \times 64$              |             |                 | -0.2770             | -0.2400             | 293.1(0.8)          | 658.80(43)             | 5.0       |
| C32P23 | $32^3 \times 64$              |             |                 | -0.2790             | -0.2400             | 227.9(1.2)          | 643.93(45)             | 3.9       |
| C48P23 | $48^3 \times 96$              |             |                 | -0.2790             | -0.2400             | 224.1(1.2)          | 644.08(62)             | 5.7       |
| C48P14 | $48^3 \times 96$              |             |                 | -0.2825             | -0.2310             | 136.4(1.7)          | 706.55(39)             | 3.5       |
| E28P35 | $28^3 \times 64$              | 6.308       | 0.08970(26)(53) | -0.2490             | -0.2170             | 351.4(1.4)          | 717.94(93)             | 4.4       |
| F32P30 | $32^3 \times 96$              | 6.41        | 0.07751(14)(45) | -0.2295             | -0.2050             | 300.4(1.2)          | 675.98(97)             | 3.8       |
| F48P30 | $48^3 \times 96$              |             |                 | -0.2295             | -0.2050             | 302.7(0.9)          | 674.76(58)             | 5.7       |
| F32P21 | $32^3 \times 64$              |             |                 | -0.2320             | -0.2050             | 210.3(2.3)          | 658.79(94)             | 2.6       |
| F48P21 | $48^3 \times 96$              |             |                 | -0.2320             | -0.2050             | 207.5(1.1)          | 661.94(64)             | 3.9       |
| F64P14 | $ 64^3 \times 128 $           |             |                 | -0.2336             | -0.2030             | 122.8(0.9)          | 679.9(0.3)             | 3.0       |
| G36P29 | $36^{3} \times 108$           | 6.498       | 0.06884(18)(41) | -0.2150             | -0.1926             | 297.2(0.9)          | 693.05(46)             | 3.6       |
| H48P32 | $48^{3} \times 144$           | 6.72        | 0.05198(20)(31) | -0.1850             | -0.1700             | 316.6(1.0)          | 691.88(65)             | 4.0       |
|        |                               |             |                 |                     |                     |                     |                        |           |

- Used 2,636 configurations with 27,158 measurements in total;
- After the continuum extrapolation, agree with the previous lattice results well.

#### **Proton case**



B.-L. Hu, et. al., CLQCD, in preparation



## **Baryon spectrum**

- Generally agree with the PDG values at 1% level;
- Decay width is added to the experimental values as an uncertainty of the pole position;
- The mass of baryon with 1 charm quark is around 2.5 GeV;
- The mass of baryon with 2 charm quarks is around 3.8 GeV;
- The mass of baryon with 3 charm quarks is around 5 GeV;
- The missing QED effect will be investigated in the near future.

#### of four light flavors



B.-L. Hu, et. al., CLQCD, in preparation





## Summary

- The state-of-the-arts Lattice QCD ensemble should have enough ensembles to approach the continuum, infinite volume and physical quark masses reliably; and the present CLQCD ensembles have been close to this goal.
- Up, down, strange and charm quark masses have been determined at a few percent level;
- The charmed meson and baryon masses are predicted at ~0.3% uncertainty and agree with the experimental values at 1% level.
- More predictions are in progress.

