B 介子两体非轻衰变研究进展

focus on the pQCD factorization approach

Shan Cheng (程山)

Hunan University

第三届高能物理理论与实验融合发展研讨会 辽宁师范大学

2024年11月2日

Overview

- I B physics and CP Violation
- II Three-scale factorization approach Low energy effective hamiltonian Three scale factorization
- III State-of-the-art PQCD prediction
- IV Conclusion

B physics and CP Violation

- "Matter \neq Antimatter" indicates the interaction with CPV
- Heavy flavour physics (HFP) provides many processes with CPV although it is inadequate and new mechanism of CPV is imminent

Timeline of B physics

- 1973, CKM mechanism is proposed (4 parameters)
- \circ 1977, CFS-E288 at FermiLab discovered Υ ($b\bar{b}$), Lederman
- \circ 1983, CLEO found B^0 meson in $\Upsilon(4S)$ decay
- $\circ~$ 1986, Bigi & Santa expectated large CPV in $B^0 \to J/\Psi {\cal K}^0_{\sf S}$
- 1987, ARGU measured the $B^0 \bar{B}^0$ oscillation ⇒ $A_{CP}(t)$
- o 1987, Oddone proposed the construction of B factories to study CPV
- 1999, BABAR, Belle started running 2001(04), $A_{CP}(t, f)(A_{CP})$ in B^0 decays
- 2009, LHCb played in to the game with 3-5 order more events 2013(20), $A_{CP}(A_{CP}(t, f))$ in B_s decays, 2012, A_{CP} in B^+ decays 2019, δA_{CP} in D decays; 2024 A_{CP} in Λ_b decays ?
- $\circ~$ Anomalies: $b \to {\it sl}^+ {\it l}^-~$ see Qi-dong's talk, 11/3 , ${\it B_s} \to \mu \mu,~|V_{ub}|,~|V_{cb}|$

Successful running of B factories(1999-2008) and LHC(2009-2026)

- SuperKEKB(2018-2026) [E. Kou et al. [Belle-II], 2019]
 - $\circ~$ Belle II has collected 531 fb^{-1} data so far with record peak luminosity $4.7{\times}10^{34} {\it cm}^{-2} {\it s}^{-1}$
 - Goal: 50 ab^{-1} data and peak luminosity at $6.5 \times 10^{35} cm^{-2} s^{-1}$
 - $\begin{array}{l} \circ \quad |V_{ub}| \text{ to } 1.2\% \text{ in } B \rightarrow \phi, \rho l \nu, \, \delta A_{CP} \text{ in } \\ B \rightarrow K^* \pi, K \rho, K^* \rho, B \rightarrow VV, \, \alpha \text{ from } \\ B \rightarrow \pi^0 \pi^0, \cdots \end{array}$
 - † $B^+ \rightarrow \rho^+ \rho^0, B^0 \rightarrow \kappa^0 \pi^0$ [Belle-II, 2021]
 - † First measurement of *CP* asymmetry parameters in $B^0 \rightarrow K_S^0 \pi^0$, $\omega \omega$ [Belle-(II), 2023,04].

- HL-LHC(2030-2033) [CERN Yellow Rep. Monogr, 2019]
 - $\label{eq:L} \begin{array}{ll} \mbox{\mathcal{L}} = 23(300) \mbox{$\rm fb$}^{-1}$ in phase 1(2), 2 order \\ larger than LHC, \ 2\times 10^{33(34)} \mbox{$\rm cm$}^{-2} \mbox{$\rm s$}^{-1} \end{array}$
 - $\begin{array}{l} \circ \quad |V_{ub}| \mbox{ to } 0.7\%(0.4\%) \mbox{ in } B \to \pi\pi, \pi\rho, \rho\rho, \\ C_{\pi+\pi^-}, S_{\pi+\pi^-} \mbox{ (one order improvement),} \\ \alpha \mbox{ from } B \to \rho\rho, \rho\pi, \cdots . \end{array}$
 - † $A_{\pi\pi}^{\text{dir}} = (2.32 \pm 0.61) \times 10^{-3}$ [LHCb, 2023] Belle/Belle II result see Long-ke's talk, 11/3
 - † $\delta A_{CP}(\Lambda_b^0 \rightarrow \Lambda K^+ K^-) = 0.083 \pm 0.028$ [LHCb-Paper-2024-043]

i low energy effective hamiltonian ii three-scale factorization

- derive the effective Hamiltonian by integrating over m_W [Buchalla 1996]
- \circ product of two charged currents \sim a series of local operators O_i with the weighted coefficients C_i
- dynamics at the scale $\mathcal{O}(m_W)$ is absorbed into Wilson coefficients $C_i(\mu)$
- \circ C_i ~ match the $\mathcal{L}_{\rm eff}$ with the full theory of weak decays [Ma 80, Inami&Lim 81, Clements 83]
- the rest go into the four fermion effective operators $O_i(\mu)$
- the key is to calculate the hadron matrix element $\langle M_1 M_2 | O_i | B \rangle$

definitely a QCD problem

- integrating over the m_W and m_b
- weak phase difference between charged and FCNC of *b* decays

• diagrams at scales $\mathcal{O}(\Lambda_{\rm QCD}) - \mathcal{O}(m_b)$, Hadron matrix element $\langle M_1 M_2 | O_i | B \rangle$

- factorization: detach the hard kernel \mathcal{H} O_i at scale $\mathcal{O}(m_b)$ from the hadron wave function Φ s B, M_1, M_2 mesons at scale $\mathcal{O}(\Lambda_{QCD})$
- ${\mathcal H}$ is calculated perturbatively order by order, Φs are universal

- high precision calculation of Hadronic matrix element $\langle M_1 M_2 | O_i | B \rangle$
 - naive factorization: $\sim F_{B \rightarrow M_2} \otimes f_{M_1}$ [Bauer&Stech&Wirbel 1985,87]
 - generalized factorization: QCD corrections from O_{i=1},...,10 [Ali&Kramer&Lü 1998,99]
 - QCDF: VC to $\mathcal{M}_{t,p}$ + corrections to spectator scattering, full NNLO ($\mathcal{O}(\alpha_s^2)$) [Benele 2010, Bell 15, 20, Huber 16, Beneke 06,07, Jain 07]
 - SCET: introduces different fields in different energy regions, simple kinematics but complicated dynamics [Bauer 2001, Chay 04, Becher 15], QCDF/SCET [Beneke 2015]
 - $B \rightarrow \pi\pi$ decay is studied from LCSRs [Khodjamirian 2001,03,05]
 - high order & power corrections to $B \rightarrow P$, V form factors LQCD [HPQCD 2013] [Bharucha 2016, Wang 15,16,20, Lü 19, Beneke 17, Gubernari 19, Cheng 17,19]

 \bullet the transversal momentum is picked up in the hard scattering amplitudes to regulate the end-point singularity $$\mathsf{PQCD}$$

- $B \rightarrow M$ FFs and the annihilation amp. are both calculable [Keum 2001, Lü 01]
- LO $(\mathcal{O}(\alpha_s))$ $B \rightarrow PP, PV, VV$ decays [Xiao 2007; Lü 02; Li 05, Li 06, Zou 15], [Hua 2021]
- partially NLO ($\mathcal{O}(\alpha_s^2)$): factorizable amplitudes [Cheng & Xiao 2021] effective operators [Mishima 2003, Li 05] hard scattering [Li 2012, Cheng 14], [Li 13, Cheng 15,15, Hua 18], [Li 14, Liu 15,16]

• end-point singularities appear in exclusive QCD processes

• pick up k_T in the internal propagators

$$\mathcal{M} \propto \sum_{t=2,3,4} \int du_1 du_2 dk_{1T} dk_{2T} \kappa_t(u_i) \frac{\alpha_s(\mu) \phi_1^t(u_1) \phi_2^t(u_2)}{u_1 u_2 Q^2 - (k_1 \tau - k_2 \tau)^2}$$

· end-point singularity at leading and subleading powers

$$\mathcal{H} \propto \frac{\alpha_s(\mu)}{u_1 u_2 Q^2 - k_T^2} \sim \frac{\alpha_s(\mu)}{u_1 u_2 Q^2} - \frac{\alpha_s(\mu) k_T^2}{(u_1 u_2 Q^2)^2} + \cdots$$

• the power suppressed TMD terms becomes important at the end-points

- introduce $k_{\mathcal{T}}$ to regularize the end-point singularity ${}_{[{\sf Huang 1991}]}$
- scales of transversal momentum and the large logarithms

- multiple scales, hence large single logarithms in \mathcal{H}/Φ by QCD correction
- double logs in the soft-collinear regions $\alpha_s(\mu) \ln^2(k_T^2/m_B^2)$

- in order to repair the perturbative expansion, do resummation
- k_T resummation for \mathcal{H} to obtain $S(x_i, b_i, Q)$ [Botts 1989, Li 92]
 - \dagger decreases the inverse power of the q^2 in the divergence amplitude
 - \dagger exhibits high suppression for large transversal distances (small k_{T}) interactions
- integrating over k_T , large log $\ln^2(x_i)$ when intermediate gluon is on shell
- threshold resummation for Φ to obtain $S_t(x_i, Q)$ [Li 1999]
 - suppresses the small x_i regions
 - \dagger repairs the self-consistency between $lpha_{s}(t)$ and hard log $\ln(x_{1}x_{3}m{Q}^{2}/t^{2})$
- ‡ dynamics with $k_T < \sqrt{Q\Lambda}$ is organized into S(x, b, Q)
- ‡ dynamics in small x is suppressed by $S_t(x, Q)$

 $\mathcal{M} = \sum_{t} \phi^{t}(u_{1}, b_{1}) \otimes \mathcal{H}_{i}(t, b) \otimes \phi^{t}(u_{2}, b_{2}) \operatorname{Exp} \left[-s(p^{+}, b) - \int_{1/b}^{t} \frac{d\bar{\mu}}{\bar{\mu}} \gamma_{\phi}(\alpha_{s}(\bar{\mu})) \right]$

• different topologies: emission (real, $\delta_1 = 0$) and annihilation (plural, $\delta_2 \neq 0$)

$$\frac{1}{k_T^2 - xm_B^2 - i\epsilon} = \mathcal{P}\left(\frac{1}{k_T^2 - xm_B^2}\right) + i\delta(k_T^2 - xm_B^2)$$

Sudakov expanent (NLO)

center of mass scattering angle and angular distribution of scattering hadrons

- important in baryon decays but not in B meson decays
- NLO corrections to spectator emission amplitude from Glauber gluon
- o only supplies a sizable phase to the pion final state
- modifies the interactions between different topological amplitudes
- on shell charm quark loop correction (NLO), leading source in QCDF

State-of-the-art PQCD prediction

$B \rightarrow PP, PV, VV$ decays: amplitudes

Weak ve	rtex	Typical a	mplitudes	Wilson co	pefficients
[s, s, s], [d	, <i>d</i> , <i>d</i>]	$\mathcal{E}^{\mathrm{LL}}/\mathcal{R}^{\mathrm{LL}}$	$\mathcal{E}_{NF}^{LL}/\mathcal{R}_{NF}^{LL}$	$a_3 + a_4 - \frac{a_9 + a_{10}}{2}$,	$C_3 + C_4 - \frac{C_9 + C_{10}}{2}$
spectator meson I	Л ₃	$\mathcal{E}^{LR}/\mathcal{R}^{LR}$,	$\mathcal{E}_{NF}^{\mathbf{LR}}/\mathcal{R}_{NF}^{\mathbf{LR}}$	$a_5 - \frac{a_7}{2}$,	$C_{5} - \frac{C_{7}}{2}$
↑		$\mathcal{E}^{\mathrm{SP}}/\mathcal{R}^{\mathrm{SP}}$,	$\mathcal{E}_{NF}^{\mathbf{SP}}/\mathcal{R}_{NF}^{\mathbf{SP}}$	$a_6 - \frac{a_8}{2}$,	$C_6 - \frac{C_8}{2}$
[d, s, s], [[s,d,d]	$\mathcal{E}^{LL}/\mathcal{R}^{LL}$,	$\mathcal{E}_{NF}^{\mathrm{LL}}/\mathcal{R}_{NF}^{\mathrm{LL}}$	$a_4 - \frac{a_{10}}{2}$,	$C_3 - \frac{C_9}{2}$
$[\underline{q1}, \underline{q2}, \underline{q3}]$		$\mathcal{E}^{LR}/\mathcal{R}^{LR}$,	$\mathcal{E}_{NF}^{\mathbf{LR}}/\mathcal{R}_{NF}^{\mathbf{LR}}$	$a_6 - \frac{a_8}{2}$,	$C_5 - \frac{C_7}{2}$
↓ [s, s, d],	d, d, s]	$\mathcal{E}^{LL}/\mathcal{R}^{LL}$,	$\mathcal{E}_{NF}^{\mathrm{LL}}/\mathcal{R}_{NF}^{\mathrm{LL}}$	$a_3 - \frac{a_9}{2}$,	$C_4 - \frac{C_{10}}{2}$
emission meson M_2		$\mathcal{E}^{LR}/\mathcal{R}^{LR}$,	$\mathcal{E}_{NF}^{\mathbf{LR}}/\mathcal{R}_{NF}^{\mathbf{LR}}$	$a_5 - \frac{a_7}{2}$,	$C_6 - \frac{C_8}{2}$
$[u, u, s], \mid$	u,u,d]	$\mathcal{E}^{LL}/\mathcal{R}^{LL}$,	$\mathcal{E}_{NF}^{\mathrm{LL}}/\mathcal{R}_{NF}^{\mathrm{LL}}$	a_2 ,	C_2
		$\mathcal{E}^{LR}/\mathcal{R}^{LR}$,	$\mathcal{E}_{NF}^{\mathbf{LR}}/\mathcal{R}_{NF}^{\mathbf{LR}}$	$a_3 + a_9$,	$C_4 + C_{10}$
		$\mathcal{E}^{SP}/\mathcal{R}^{SP}$,	$\mathcal{E}_{NF}^{SP}/\mathcal{R}_{NF}^{SP}$	$a_5 + a_7$,	$C_6 + C_8$
[<i>s</i> , <i>u</i> , <i>u</i>],	d, u, u]	$\mathcal{E}^{LL}/\mathcal{R}^{LL}$,	$\mathcal{E}_{NF}^{\mathrm{LL}}/\mathcal{R}_{NF}^{\mathrm{LL}}$	a_1 ,	C_1
		$\mathcal{E}^{LR}/\mathcal{R}^{LR}$,	$\mathcal{E}_{NF}^{\mathbf{LR}}/\mathcal{A}_{NF}^{\mathbf{LR}}$	$a_4 + a_{10}$,	$C_3 + C_9$
		$\mathcal{E}^{SP}/\mathcal{R}^{SP}$,	$\mathcal{E}_{NF}^{SP}/\mathcal{R}_{NF}^{SP}$	$a_6 + a_8$,	$C_{5} + C_{7}$

· general decomposition of Wilson coefficients for certain effective weak vertex

- ie. decay amplitude of ${\cal B}^+ \to \pi^+ {\it K}^0$ at NLO

$$\begin{split} \mathcal{M}(B^+ \to \pi^+ K^0) = & \frac{G_F}{\sqrt{2}} V_{ab}^* V_{ac} \Big[a_1 \mathcal{A}_{\mathrm{LL}}^{\mathrm{LL}} + C_1 \mathcal{A}_{NF,\pi}^{\mathrm{LL}} + \mathcal{M}_{B\to K^*\pi^-}^{(\mathrm{a}_1)} \Big] + \frac{G_F}{\sqrt{2}} V_{cb} V_{cJ} \mathcal{M}_{B\to K^*\pi^-}^{(\mathrm{a}_1)} - \frac{G_F}{\sqrt{2}} V_{cb}^* V_{cl} \Big[\left(a_4 - \frac{a_{10}}{2} \right) \mathcal{E}_{\pi}^{\mathrm{LL}} \\ & + \left(a_6 - \frac{a_8}{2} \right) \mathcal{E}_{\pi}^{\mathrm{SP}} + \left(C_3 - \frac{C_9}{2} \right) \mathcal{E}_{NF,\pi}^{\mathrm{LL}} + \left(C_5 - \frac{C_7}{2} \right) \mathcal{E}_{NF,\pi}^{\mathrm{LR}} + \left(a_4 + a_{10} \right) \mathcal{A}_{\pi}^{\mathrm{LL}} + \left(a_6 + a_8 \right) \mathcal{A}_{\pi}^{\mathrm{SP}} \\ & + \left(C_3 + C_9 \right) \mathcal{A}_{NF,\pi}^{\mathrm{LL}} + \left(C_5 + C_7 \right) \mathcal{A}_{NF,\pi}^{\mathrm{LR}} + \mathcal{M}_{B\to N^*\pi^+}^{\mathrm{ch}(\mathrm{a}_1)} + \mathcal{M}_{B\to N^*\pi^+}^{\mathrm{ch}(\mathrm{a}_2)} \Big], \end{split}$$

riangle the glauber gluon corrections and TMD wave functions are not taken into account in this work

$B \rightarrow PP, PV, VV$ decays: amplitudes

• operator decomposition of $B \rightarrow PP$ decays

	Topology	Channel
	$\{\mathbf{P}, T, C, E, P_{ew} \}$	$\pi^0 K^+,\eta_q K^+$
	$\{\mathbf{T}, \mathrm{P}, \mathrm{C}, \mathrm{E}, \mathrm{P}_{\mathrm{ew}} \; \}$	$\pi^+\eta_q$
Tree/color-favoured tree emission	$\{\mathbf{T}, C, P_{ew} \; \}$	$\pi^+\pi^0$
QCD Penguin	$\{\mathbf{P}, \mathbf{E}, \mathbf{P}_{\mathrm{ew}} \}$	$\pi^+ K^0,\eta_s K^+,K^+ \bar{K}^0$
	$\{{\bf P}, {\rm P_{ew}}\;\}$	$\pi^+\eta_s$
Color-suppressed tree emission	$\{\mathbf{T}, \mathrm{P}, \mathrm{E}, \mathrm{P}_{\mathrm{ew}} \; \}$	$\pi^+\pi^-$
P _{em} : Electroweak penguin	$\{{\bf P}, T, P_{\rm ew}\;\}$	$\pi^- K^+$
	$\{\mathbf{C}, \mathbf{E}, \mathbf{P}, \mathrm{P}_{\mathrm{ew}} \; \}$	$\pi^0\pi^0,\pi^0\eta_q,\eta_q\eta_q$
E: tree annihilation amplitude	$\{\mathbf{P}, \mathbf{C}, \mathbf{P}_{\mathrm{ew}} \}$	$\pi^0 K^0, \eta_q K^0$
	$\{{\bf P}, {\rm P}_{\rm ew}\;\}$	$\eta_s K^0, K^0 \bar{K}^0, \pi^0 \eta_s, \eta_s \eta_s, \eta_q \eta_s$
	$\{{\bf E}, P, P_{\rm ew}\;\}$	K^+K^-

- main uncertainties of PQCD calculation: high order QCD corrections & LCDAs
 - † characterized by the variation in the factorization scale
 - $\dagger\,$ minimized by setting μ_t as the largest virtuality in hard scattering
 - † two-loop expression for the strong coupling
- input parameters of meson LCDAs

Meson	π^{\pm}/π^{0}	K^{\pm}/K^0	η_q	η_s
m/GeV [108]	0.140/0.135	0.494/0.498	0.104	0.705
<i>f</i> /GeV	0.130 [108]	0.156 [108]	0.125 [114]	0.177 [114]
m_0/GeV	1.400	1.892 [112]	1.087	1.990
a_1	0	0.076 ± 0.004 [113]	0	0
<i>a</i> ₂	0.270 ± 0.047 [14]	0.221 ± 0.082 [113]	0.250 ± 0.150 [115]	0.250 ± 0.150 [115]
Meson	ρ^{\pm}/ρ^{0}	$K^{*\pm}/K^{*0}$	ω	φ
m/GeV [108]	0.775	0.892	0.783	1.019
f /GeV [9]	0.210/0.213	0.204	0.197	0.233
f^{\perp}/GeV	0.144/0.146 [116]	0.159 [9]	0.162 [9]	0.191 [9]
a_1^{\parallel}	0	0.060 ± 0.040 [117]	0	0
a_1^{\perp}	0	0.040 ± 0.030 [117]	0	0
a_2^{\parallel}	0.180±0.037 [116]	0.160 ± 0.090 [117]	0.150 ± 0.120 [117]	0.230 ± 0.080 [117]
a_2^{\perp}	0.137±0.030 [116]	0.100 ± 0.080 [117]	0.140 ± 0.120 [117]	0.140 ± 0.070 [117]

default scale 1 GeV

Mode	LO	+VC	+QL	+MP	$+\mathcal{F}^{NLO}$	PDG [108]
$\mathcal{B}(B^+ \to \pi^+ \pi^0)$	3.58	3.89			$4.18^{+1.32}_{-0.97}$	5.5 ± 0.4
\mathcal{A}_{CP}	-0.05	0.09			$0.08^{+0.09}_{-0.09}$	3 ± 4
$\mathcal{B}(B^0 \rightarrow \pi^+ \pi^-)$	6.97	6.82	6.92	6.76	7.31+2.38	5.12 ± 0.19
$C_{\pi^+\pi^-}$	-23.4	-27.6	-13.8	-13.3	$-12.8^{+3.5}_{-3.3}$	-32 ± 4
$S_{\pi^{+}\pi^{-}}$	-31.1	-35.5	-46.4	-37.0	$-36.4^{+1.5}_{-1.5}$	-65 ± 4
$\mathcal{B}(B^0\to\pi^0\pi^0)$	0.14	0.29	0.30	0.22	$0.23^{+0.07}_{-0.05}$	1.59 ± 0.26
$C_{x^{0}x^{0}}$	-3.1	60.1	73.6	77.6	$80.2^{+5.2}_{-6.7}$	33 ± 22
$\mathcal{B}(B^+ \to \pi^+ K^0)$	17.0	20.8	28.0	19.4	20.3+6.3	23.7 ± 0.8
\mathcal{A}_{CP}	-1.19	-0.95	-0.06	-0.08	$-0.08^{+0.08}_{-0.09}$	-1.7 ± 1.6
$\mathcal{B}(B^+ \to \pi^0 K^+)$	10.0	12.75	16.76	11.92	12.3+3.8 -2.7	12.9 ± 0.5
\mathcal{A}_{CP}	-10.9	-5.20	2.26	2.48	$2.28^{+1.61}_{-1.74}$	3.7 ± 2.1
$\mathcal{B}(B^0\to\pi^-K^+)$	14.3	18.0	23.9	16.4	$17.1^{+5.2}_{-3.7}$	19.6 ± 0.5
\mathcal{A}_{CP}	-15.2	-14.2	-4.16	-5.42	$-5.43^{+2.24}_{-2.34}$	-8.3 ± 0.4
$\mathcal{B}(B^0\to\pi^0K^0)$	5.90	8.12	10.4	6.99	$7.38^{+2.11}_{-1.50}$	9.9 ± 0.5
$C_{n^{0}K^{0}}$	-2.62	-7.31	-6.57	-7.97	$-7.70^{+0.21}_{-0.13}$	0 ± 13
$S_{\pi^{0}K^{0}}$	70.1	73.5	71.6	71.9	71.9+0.6	58 ± 17

• anatomy of NLO corrections to ${\cal B}$ and ${\cal A}_{CP}$ of $\pi\pi,\pi K$ modes

- $\circ~\mathcal{B}:~\mathsf{QL}$ cancels with MP corrections, not sensitive to VC and NLO ffs
- $\circ~$ color-suppressed modes $(\pi^0\pi^0,\pi^0{\cal K}^0)$ are more sensitive to NLO corrections
- asymmetry parameters is more sensitive to the NLO corrections
- VC (QL) flips the sign of the direct CPV of $\pi^+\pi^0$ and $\pi^0\pi^0$ (π^0K^+) modes $\mathcal{A}_{CP}(B^+ \to K^+\pi^0) - \mathcal{A}_{CP}(B^+ \to K^+\pi^-) = 7.71^{+2.74}_{-2.92}$ (PQCD) VS 12.0 \pm 2.4(Data)
- LO PQCD predicted a large direct CPV in $\pi^- K^+, \pi^+ \pi^-$ (2000), which were confirmed subsequently by the BABRA and Belle collaborations.

• updated PQCD results for $\mathcal{B}(B \to PP)$ (in units of 10^{-6})

	Mode	PQCD	SCET1 [125]	SCET2 [125]	QCDF [127]	PDG [108]
	$B^+ \to \pi^+ K^0$	20.3+6.3+0.1 -4.4-0.1			$21.7^{+13.4}_{-9.1}$	23.7 ± 0.8
	$B^+ \to \pi^0 K^+$	12.3+3.8+0.1 -2.7-0.1			$12.5_{-4.8}^{+6.8}$	12.9 ± 0.5
	$B^+ \to \eta' K^+$	52.0 ^{+15.0+2.1} -10.8-0.7	69.5 ± 28.4	69.3 ± 27.7	74.5+63.6	70.4 ± 2.5
	$B^+ \to \eta K^+$	6.68 ^{+2.26+1.85} -1.60-0.96	2.7 ± 4.8	2.3 ± 4.5	$2.2^{+2.0}_{-1.3}$	2.4 ± 0.4
	$B^+ \rightarrow K^+ \bar{K}^0$	1.56+0.48+0.02			$1.8^{+1.1}_{-0.7}$	1.31 ± 0.17
	$B^+ \to \pi^0 \pi^+$	$4.18^{+1.30+0.22}_{-0.94-0.22}$ 4.45			$5.9^{+2.6}_{-1.6}$	5.5 ± 0.4
η _q -η _s mixin	$B^+ \rightarrow \pi^+ \eta'$	2.00+0.57+0.36 -0.42-0.31	2.4 ± 1.3	2.8 ± 1.3	$3.8^{+1.6}_{-0.8}$	2.7 ± 0.9
$\sqrt{\eta_q} - \eta_s - \eta_g$ m	i×i ng ₊π⁺η	2.62+0.78+0.45 -0.57-0.40	4.9 ± 2.0	5.0 ± 2.1	5.0 ^{+1.5} -0.9	4.02 ± 0.27
[Fan 2012]	$B^0 \to \pi^- K^+$	17.1+5.2+0.1 -3.7-0.1			$19.3^{+11.4}_{-7.8}$	19.6 ± 0.5
	$B^0 \rightarrow \pi^0 K^0$	7.38+2.11+0.03 -1.50-0.04			8.6+5.4	9.9 ± 0.5
	$B^0 \rightarrow \eta' K^0$	52.3 ^{+14.9+2.1} -10.8-0.3	63.2 ± 26.3	62.2 ± 25.4	70.9+59.1	66 ± 4
	$B^0 \rightarrow \eta K^0$	4.63 ^{+1.57+1.51} -1.09-0.79	2.4 ± 4.4	2.3 ± 4.4	$1.5^{+1.7}_{-1.1}$	$1.23^{+0.27}_{-0.24}$
	$B^0 \rightarrow K^0 \bar{K}^0$	1.48+0.47+0.01 -0.33-0.00			$2.1^{+1.3}_{-0.8}$	1.21 ± 0.16
	$B^0 \to K^+ K^-$	0.046+0.058+0.009 -0.039-0.008			0.1 ± 0.04	0.078 ± 0.015
	$B^0 \to \pi^+\pi^-$	$7.31^{+2.35+0.38}_{-1.68-0.36}$ 5.35			$7.0^{+0.8}_{-1.0}$	5.12 ± 0.19
✓ Glauber glu	on <i>s</i> eff <i>e</i> et	$0.23^{+0.07+0.01}_{-0.05-0.01}$ 0.61			$1.1^{+1.2}_{-0.5}$	1.59 ± 0.26
[Liu 2014]	$B^0 \rightarrow \pi^0 \eta'$	0.20+0.05+0.02 -0.03-0.01	2.3 ± 2.8	1.3 ± 0.6	$0.42^{+0.28}_{-0.15}$	1.2 ± 0.6
	$B^0 \to \pi^0 \eta$	$0.20^{+0.06+0.02}_{-0.04-0.01}$	0.88 ± 0.68	0.68 ± 0.62	$0.36^{+0.13}_{-0.11}$	0.41 ± 0.17
	$B^0 \rightarrow \eta \eta$	0.37+0.09+0.08	0.69 ± 0.71	1.0 ± 1.5	$0.32^{+0.15}_{-0.08}$	< 1
	$B^0 \rightarrow \eta \eta'$	$0.29^{+0.07+0.06}_{-0.05-0.06}$	1.0 ± 1.6	2.2 ± 5.5	$0.36^{+0.27}_{-0.13}$	< 1.2
	$B^0 \to \eta' \eta'$	0.42+0.09+0.13 -0.07-0.11	0.57 ± 0.73	1.2 ± 3.7	$0.22^{+0.16}_{-0.08}$	< 1.7

- $\circ~$ NLO corrections are important in penguin dominated models $\pi {\cal K}, \eta' {\cal K}$ and pure annihilation mode ${\cal K}^0 {\cal K}^0$
- LO PQCD $\mathcal{B}(B_s \to \pi^+\pi^-) \sim 6 \times 10^{-6}$ (2007), confirmed by CDF (2011)

• updated PQCD results for the CPV of $B \rightarrow PP$ decays (in units of 10^{-2})

	Mode	PQCD	SCET1 [125]	SCET2 [125]	QCDF [127]	PDG [108]
	$B^+ \rightarrow \pi^+ K_S^0$	$-0.08^{+0.08+0.02}_{-0.09-0.02}$			$0.28^{+0.09}_{-0.10}$	-1.7 ± 1.6
	$B^+ \to \pi^0 K^+$	$2.28^{+1.53+0.50}_{-1.65-0.57}$			4.9 ^{+6.3} -5.8	3.0 ± 2.1
	$B^+ \rightarrow \eta' K^+$	$-1.83^{+0.40+0.77}_{-0.40-1.03}$	-1 ± 1	7±1	$0.45^{+1.4}_{-1.1}$	0.4 ± 1.1
	$B^+ \to \eta K^+$	$-7.75^{+1.06+0.81}_{-0.99-0.43}$	33 ± 31	-33 ± 40	$-14.5^{+18.6}_{-28.1}$	-37 ± 8
	$B^+ \rightarrow K^+ K_S^0$	$1.83^{+1.93+0.14}_{-1.87-0.18}$			-6.4 ± 2.0	14
	$B^+ \to \pi^0 \pi^+$	$0.08^{+0.06+0.07}_{-0.06-0.04}$			$-0.11^{+0.06}_{-0.03}$	3±4
η_q - η_s mixing	$B^+ \to \pi^+ \eta^\prime$	68.9 ^{+2.4+1.0} -2.4-0.9	21 ± 21	2 ± 18	$1.6^{+10.6}_{-13.8}$	6±16
$\sqrt{\eta_q} - \eta_s - \eta_g \text{ mix}$	$ingB^+ \rightarrow \pi^+ \eta$	24.8 ^{+3.6+0.8} -3.3-0.7	5 ± 29	37 ± 29	$-5.0^{+8.7}_{-10.8}$	-14 ± 7
[Fan 2012]	$B^0 \to \pi^- K^+$	$-5.43^{+1.86+1.26}_{-1.92-1.34}$			$-7.4^{+4.6}_{-5.0}$	-8.3 ± 0.4
	$B^0 \rightarrow \pi^0 K_S^0$	$-7.70^{+0.17+0.12}_{-0.09-0.09}$			$-10.6^{+6.2}_{-5.7}$	$C_{\pi^0 K^0} = 0 \pm 13$
Belle II, PRL.131.11180	03(2023)	71.9+0.3+0.5			79.0+7.2	$S_{\pi^0 K^0} = 58 \pm 17$
$-0.04 \pm 0.15 \pm 0.08$	$5 B^0 \rightarrow \eta' K_S^0$	$-2.65^{+0.10+0.07}_{-0.10-0.11}$	1.1 ± 1.4	-2.7 ± 1.2	$3.0^{+1.0}_{-0.9}$	$C_{\eta'K^0}=-6\pm 4$
$0.75 \pm 0.20 \pm 0.04$		69.8 ^{+0.1+0.1} -0.1-0.1	70.6	71.5	67.0 ± 1.4	$S_{\eta' K^0} = 63 \pm 6$
	$B^0 \rightarrow \eta K_S^0$	$-7.88^{+0.14+0.06}_{-0.10-0.02}$	21±21	-18 ± 23.2	$-23.6^{+16.0}_{-29.0}$	
		70.0+0.2+0.2 -0.3-0.1	69	79	79.0 ^{+8.9} -8.5	
	$B^0 \rightarrow K^0_S K^0_S$	$-17.3^{+0.6+0.4}_{-0.4-0.3}$			$-10.0^{+1.2}_{-2.0}$	$C_{K_{S}^{0}K_{S}^{0}} = 0 \pm 40$
		5.34 ^{+1.05+0.53} -1.06-0.49				$S_{K_{S}^{0}K_{S}^{0}} = -80 \pm 50$
	$B^0 \rightarrow \pi^+ \pi^-$	$-12.8^{+3.3+1.1}_{-3.1-1.1}$			17.0 ^{+4.5} -8.8	$C_{\pi^+\pi^-} = -32 \pm 4$
		$-36.4^{+0.5+1.4}_{-0.4-1.4}$			$-69^{+20.6}_{-13.5}$	$S_{\pi^+\pi^-} = -65 \pm 4$
	$B^0 \rightarrow \pi^0 \pi^0$	$-80.2^{+5.2+0.4}_{-6.7-0.2}$			$57.2^{+33.7}_{-40.4}$	$C_{\pi^0\pi^0} = -33 \pm 22$
		53.5 ^{+8.7+3.1} -8.4-3.0				

?

• updated PQCD results for the CPV of $B^+ \rightarrow PV$ decays (in units of 10^{-2})

	Mode	PQCD	SCET1 [128]	SCET2 [128]	QCDF [127]	PDG [108]
	$B^+ \rightarrow \eta' K^{*+}$	1.54+9.05+14.9 -8.16-9.74	2.7+27.4 -19.5	$2.6^{+26.7}_{-32.9}$	65.5 ^{+35.7} -63.9	-26 ± 27
	$B^+ \rightarrow \eta K^{*+}$	$-34.5^{+2.5+0.9}_{-2.4-0.8}$	$-2.6^{+5.4}_{-5.5}$	$-1.9^{+3.4}_{-3.6}$	$-9.7^{+7.3}_{-8.0}$	2±6
large CPV prediction	$^{S}B^{+} \rightarrow K^{+}\omega$	$31.5^{+0.6+0.1}_{-1.1-0.7}$	$11.6^{+18.2}_{-20.4}$	$12.3^{+16.6}_{-17.3}$	$22.1^{+19.6}_{-18.2}$	-2 ± 4
	$B^+ \to \pi^+ K^{*0}$	$-0.94^{+0.26+0.04}_{-0.29-0.03}$	0	0	$0.4^{+4.5}_{-4.2}$	-4 ± 9
	$B^+ \to \pi^0 K^{*+}$	$-0.01^{+4.40+1.12}_{-4.87-1.26}$	$-17.8^{+30.4}_{-24.7}$	$-12.9^{+12.0}_{-12.2}$	$1.6^{+11.5}_{-4.2}$	-39 ± 21
	$B^+ \to K^+ \rho^0$	58.7 ^{+4.3+3.2} -4.0-2.8	$9.2^{+15.2}_{-16.1}$	$16.0^{+20.5}_{-22.5}$	45.4 ^{+36.1} -30.2	37 ± 10
	$B^+ \to K^0 \rho^+$	$0.99^{+0.01+0.13}_{-0.01-0.18}$	0	0	$0.3^{+0.5}_{-0.3}$	-3 ± 15
large CPV in rare de	$C_{B}^{OV} \rightarrow K^+ \bar{K}^{*0}$	21.3 ^{+6.2+1.2} -5.7-1.4	$-3.6^{+6.1}_{-5.3}$	$-4.4^{+4.1}_{-4.1}$	$-8.9^{+3.0}_{-2.6}$	12 ± 10
	$B^+ \to K^+ \phi$	$-1.93^{+0.66+0.66}_{-0.60-0.42}$	0	0	$0.6^{+0.1}_{-0.1}$	2.4 ± 2.8
	$B^+ \to \pi^+ \phi$	0.0			0.0	1 ± 5
	$B^+ \to \pi^+ \omega$	$-29.8^{+0.5+1.1}_{-0.4-0.8}$	$0.5^{+19.1}_{-19.6}$	$2.3^{+13.4}_{-13.2}$	$-13.2^{+12.4}_{-10.9}$	-4 ± 5
	$B^+ \to \pi^+ \rho^0$	$14.9^{+0.4+0.5}_{-0.4-0.6}$	$-10.8^{+13.1}_{-12.7}$	$-19.2^{+15.6}_{-13.5}$	$-9.8^{+11.9}_{-10.5}$	0.9 ± 1.9
	$B^+ \rightarrow \pi^0 \rho^+$	$-7.31^{+0.06+0.07}_{-0.02-0.03}$	$15.5^{+17.0}_{-19.0}$	$12.3^{+9.4}_{-10}$	9.7 ^{+8.3} -10.8	2 ± 11
η_q - η_s mixing	$B^+ \to \eta' \rho^+$	29.0 ^{+0.4+0.0} -0.4-0.1	$-19.8^{+66.6}_{-37.6}$	$-21.7^{+135.9}_{-24.3}$	$1.4^{+14.0}_{-11.9}$	26 ± 17
η_q - η_s - η_g mixing	$B^+ \rightarrow \eta \rho^+$	$-13.0^{+0.1+0.1}_{-0.1-1.5}$	$-6.6^{+21.5}_{-21.3}$	$-9.1^{+16.7}_{-15.8}$	$-8.5^{+6.5}_{-5.3}$	11 ± 11

- $\circ~$ measured direct CPV in $B \rightarrow PV$ is significantly larger than that in $B \rightarrow PP$
- it is hard to measure $B \rightarrow PV$ decays precisely \Leftarrow vector meson is not stable
- $\circ~$ cascade decay $B \rightarrow PV \rightarrow PPP$, hard to resolve see Wen-fei's talk, 11/3
- dimeson light-cone distribution amplitudes provide a possible solution [Cheng, Khodjomirian, Virto 2017, 2019, Cheng 2021]

В

• updated PQCD prediction of $\mathcal{B}(B^+ \to VV)$ (in units of 10^{-6})

			-		
	Mode	PQCD	SCET [130]	QCDF [127,131]	PDG [108]
	$B^+ \rightarrow \rho^+ K^{*0}$	9.40 ^{+1.43+1.05} -1.34-0.95	8.93 ± 3.18	9.2 ^{+3.8} -5.5	9.2 ± 1.5
	$B^+ \rightarrow \rho^0 K^{*+}$	6.25 ^{+1.12+0.59} -0.84-0.53	4.64 ± 1.37	5.5 ^{+1.4} -2.5	4.6 ± 1.1
	$B^+ \to \omega K^{*+}$	$5.48^{+1.52+0.81}_{-1.36-0.66}$	5.56 ± 1.60	$3.0^{+2.5}_{-1.5}$	< 7.4
	$B^+ \to \phi K^{*+}$	$12.3^{+1.7+1.5}_{-1.4-1.4}$	9.86 ± 3.39	$10.0^{+12.4}_{-3.5}$	10.2 ± 2.0
isospin symmetry	$B^+ \rightarrow K^{*+} \bar{K}^{*0}$	$0.66^{+0.12+0.09}_{-0.09-0.08}$	0.52 ± 0.18	$0.6^{+0.3}_{-0.3}$	0.91 ± 0.29
smallness of $\mathcal{B}(a^0 a^0)$	$B^+ \to \rho^0 \rho^+$	$14.0^{+4.1+0.4}_{-3.0-0.4}$	22.1 ± 3.7	20.06+4.5	24.0 ± 1.9
\downarrow	$B^+ \to \rho^+ \omega$	$10.9^{+2.8+1.0}_{-2.1-0.9}$	19.2 ± 3.1	16.9 ^{+3.6} -1.8	15.9 ± 2.1
$\mathcal{B}(\rho^+\rho^-) \sim 2\mathcal{B}(\rho^+\rho^0)$	$B^+ \rightarrow \rho^+ \phi$	$0.042^{+0.011+0.004}_{-0.008-0.003}$	0.005 ± 0.001		< 3.0
VS (no new physics	$B^0 \rightarrow \rho^- K^{*+}$	8.72 ^{+1.27+0.97} -0.96-0.87	10.6 ± 3.2	8.9 ^{+4.9} -5.6	10.3 ± 2.6
v3 (no new physics	$B^0 \rightarrow \rho^0 K^0$	$3.37^{+0.38+0.49}_{-0.29-0.39}$	5.87 ± 1.87	$4.6^{+3.6}_{-3.6}$	3.9 ± 1.3
PQCD: ~ 1.6	$B^0 \rightarrow \omega K^{*0}$	5.93 ^{+0.89+1.74} -0.73 ^{-1.55}	3.82 ± 1.39	$2.5^{+2.5}_{-1.5}$	2.0 ± 0.5
Data: ~ 1	$B^0 \to \phi K^{*0}$	$11.8^{+1.6+1.5}_{-1.3-1.5}$	9.14 ± 3.14	10.0 ± 0.5	
	$B^0 \to K^{*0} \bar{K}^{*0}$	$0.38^{+0.09+0.02}_{-0.06-0.01}$	0.48 ± 0.16	$0.6^{+0.2}_{-0.3}$	0.83 ± 0.24
	$B^0 \to K^{*+} K^{*-}$	$0.17^{+0.02+0.05}_{-0.02-0.03}$		$0.16^{+0.1}_{-0.1}$	< 2.0
	$B^0 \rightarrow \rho^+ \rho^-$	22.7 ^{+6.3+0.6}	27.7 ± 4.1	$25.5^{+2.8}_{-3.0}$	27.7 ± 1.9
$PQCD: B(\rho^{\circ}\rho^{\circ}) \sim 2E$	$(\pi B^{0} \rightarrow \rho^{0} \rho^{0})$	0.54+0.16+0.04	1.00 ± 0.29	$0.9^{+1.9}_{-0.5}$	0.96 ± 0.15
$Data: \mathcal{B}(\rho^* \rho^*) \sim \mathcal{B}(\pi)$	$\pi B^0 \rightarrow \rho^0 \omega$	0.89 5 auber gluor	0.59 ± 0.19	inconsistence be	tween two B factor
	$B^0 \rightarrow \rho^0 \phi$	$0.019^{+0.005+0.002}_{-0.004-0.001}$	~ 0.002		< 3.3
elle, PRL.133.1081801(2024	4) $B^0 \rightarrow \omega \omega$	$1.21^{+0.24+0.31}_{-0.19-0.24}$	0.39 ± 0.13	$0.7^{+1.1}_{-0.4}$	1.2 ± 0.4
$.53 \pm 0.29 \pm 0.17$	$B^0 \rightarrow \omega \phi$	$0.018^{+0.005+0.005}_{-0.004-0.005}$	~ 0.002		< 0.7
	$B^0 \rightarrow \phi \phi$	$0.029^{+0.002+0.006}_{-0.002-0.006}$			< 0.027

 $\circ~$ NLO corrections are important in rare modes $\rho^+\phi,\rho^0\rho^0(\omega,\rho),\omega\omega(\phi)$

Belle, PRL $0.87 \pm 0.$

	Mada	DOCD: - [51]	BOCD	SCET [120]	OCDF [127 121]	HELAV [124]
	Mode	FQCDL0 [51]	FQCD	3CE1 [130]	QCDF [127,151]	HFLAV [154]
	$B^+ \rightarrow \rho^+ K^{*0}$	70.0 ± 5.0	76.6+1.5	45.0 ± 18.0	48.0 ^{+52.0} -40.0	48 ± 8
	$B^+ \rightarrow \rho^0 K^{*+}$	75.0 ^{+4.0} -5.0	$80.0^{+1.5}_{-1.5}$	42.0 ± 14.0	67.0 ^{+31.0} -48.0	78 ± 12
	$B^+ \rightarrow \omega K^{*+}$	64.0 ± 7.0	77.4+0.5	53.0 ± 14.0	67.0 ^{+32.0} -39.0	41 ± 19
	$B^+ \to \phi K^{*+}$	57.0 ^{+6.3} -5.9	$68.7^{+1.3}_{-1.5}$	51.0 ± 16.4	49.0 ^{+51.0} -43.0	50 ± 5
	$B^+ \rightarrow K^{*+} \bar{K}^{*0}$	74.0 ± 7.0	82.4+1.1	50.0 ± 16.0	45.0 ^{+55.0} -38.0	82^{+15}_{-21}
	$B^+ \to \rho^0 \rho^+$	98.0 ± 1.0	96.9 ^{+0.1} -0.1	~ 100	96.0 ± 2.0	95 ± 1.6
	$B^+ \to \rho^+ \omega$	97.0 ± 1.0	96.3 ^{+0.3} -0.4	97.0 ± 1.0	96.0 ^{+2.0} -3.0	90 ± 6
	$B^+ \rightarrow \rho^+ \phi$	95.0 ± 1.0	$81.3^{+1.9}_{-1.8}$	~ 100		
	$B^0 \rightarrow \rho^- K^{*+}$	68.0 ^{+5.0} -4.0	75.7 ^{+1.5} -1.4	55 ± 14	53.0 ^{+45.0} -32.0	38 ± 13
	$B^0 \rightarrow \rho^0 K^{*0}$	65.0 ^{+4.0} -5.0	$71.0^{+1.5}_{-1.3}$	61.0 ± 13.0	39.0 ^{+60.0} -31.0	17.3 ± 2.6
	$B^0 \rightarrow \omega K^{*0}$	65.0 ± 5.0	$77.7^{+0.4}_{-0.9}$	40.0 ± 20.0	58.0 ^{+44.0} -17.0	69 ± 11
	$B^0 \to \phi K^{*0}$	56.5 ^{+5.8} -5.9	69.5 ^{+1.2} -1.5	51.0 ± 16.4	50.0 ^{+51.0} -44.0	49.7 ± 1.7
	$B^0 \to K^{*0} \bar{K}^{*0}$	58.0 ± 8.0	68.8 ^{+5.3} -5.3	50.0 ± 16.0	52.0 ^{+48.0} -49.0	74 ± 5
	$B^0 \to K^{*+} K^{*-}$	~ 100.0	~ 100.0		~ 100.0	
	$B^0 \rightarrow \rho^+ \rho^-$	95.0 ± 1.0	93.8 ^{+0.1} -0.1	99.1 ± 0.3	92.0 ^{+1.0} -3.0	99.0 ^{+2.1} -1.9
	$B^0 \rightarrow \rho^0 \rho^0$	12.0+16.0	80.9+1.9	87.0 ± 5.0	92.0 ^{+7.0} -37.0	71+8
	$B^0 \rightarrow \rho^0 \omega$	67.0 ^{+8.0} -9.0	$74.2^{+0.1}_{-0.1}$	58.0 ± 14.0	52.0 ^{+12.0} -44.0	
	$B^0 \rightarrow \rho^0 \phi$	95.0 ± 1.0	$81.3^{+1.9}_{-1.8}$	~ 100		
.133.1081801(2024	$B^0 \rightarrow \omega \omega$	66.0 ^{+10.0} -11.0	88.4 ^{+0.9} -0.8	64.0 ± 15.0	94.0 ^{+4,0} -20.0	
13 ± 0.13	$B^0 \rightarrow \omega \phi$	94.0 ^{+2.0} -3.0	80.8+0.8	~ 100		
	$B^0 \rightarrow dd$	97.0+1.0	99.9+0.0			

• updated PQCD results for the f_L of $B^+ \rightarrow VV$ decays (in units of 10^{-2})

[†] LO PQCD predicted $f_L \sim 0.7$ in penguin dominated $B \rightarrow VV$ by annihilation mechanism (2002), before the observation of "polarization puzzle".

Conclusion

- state-of-the-art PQCD calculations with including the current well-known NLO and sub-leading power corrections
- $K\pi, K\rho, K\omega, K\phi$ and $K^*\rho, K^*\omega, K^*\phi$ channels $\checkmark \checkmark K^*\pi, K^*K$ channels \checkmark
- f_L in $K^*\rho$, $K^*\omega$, $K^*\phi$ channels is still larger than the HFLAV result LD effect in $B \to K^*$ transition ? NLO corrections to $B \to V$ form factors ? width effect of the intermediate vector resonant (four-body decays) ?
- $\eta^{(\prime)}$ involved channels do not consist well with data the complicate mixing mechanism η_q - η_s - η_g ?
- CPV of charged (neutral) *B* decays is (not) sensitive to the new added two power correction (heavy quark expansion), especially for the channels with at least one $\eta^{(\prime)}$ in the final state

Conclusion

- predictions in $K^0_{\mathcal{S}}\pi^0,\omega\omega$ modes are confirmed
- what's the next ? CPV or $\eta\eta,\eta\eta',\eta'\eta'$?

Our results for \mathcal{B} and f_L agree well with predictions from next-to-leading-order (NLO) perturbative QCD (PQCD) [23], but not from leading-order (LO) PQCD [19]. This indicates that NLO corrections and power-suppressed terms play an important role in color-suppressed $b \rightarrow (u, d)$ decays. Such a role would help clarify the puzzle in $B^0 \rightarrow \rho^0 \rho^0$, where the measured f_L is significantly higher than the LO PQCD prediction [19]. Our result for $\mathcal{B}(B^0 \rightarrow \omega \omega)$ is significantly higher than the prediction from soft collinear effective theory [22]. Our result for A_{CP} shows no significant *CP* violation, consistent within uncertainties with CKM unitarity. Belle, PRL.133.1081801(2024)

[23] Chai, SC, Ju, Yan, Lu, Xiao, CPC 46.12(2022)123103
[19] Zou, Ali, Lu, Liu, Li, PRD 91.054033(2015)

Thank you for your patience.