Nuclear decay anomalies as a signature of axion dark matter

Xin Zhang, Liaoning Normal University,

Based on 2303.09865, Phys. Rev. D 108 (7) (2023) L071101

In collaboration with Nick Houston (Beijing University of Technology) and Tianjun Li (ITP-CAS)

第三届高能物理理论与实验融合发展研讨会, November2 2024, zhangxin@nao.cas.cn

The big picture

- Fundamentally, we believe that nuclear decay is **random** and **spontaneous**
- However, we also expect QCD axion DM will lead to an oscillating θ -angle
- As θ modifies nuclear physics, this can lead to non-random decay behaviour
- This talk is about using nuclear decay data to search for axion DM

Motivation

- New experimental strategies for axion DM detection
- Explanation of existing nuclear decay anomalies?

Axion and the misalignment mechanism

 \mathbf{U}

$$\mathscr{L}_{\theta} = -\theta \frac{\alpha_S}{8\pi} G^i_{\mu\nu} \tilde{G}^{\mu\nu i} \longrightarrow \theta \equiv \frac{a}{f_a} \longrightarrow$$

• For QCD axions with initial condition $\theta_{a,i}$ we typically have

$$\Omega_a h^2 \sim 2 imes 10^4 igg(rac{f_a}{10^{16} {
m GeV}} igg)^{7/6} igg\langle heta_{a,i}^2 ig
angle, \quad heta \simeq \sqrt{rac{2
ho_{DM}}{m_a^2 f_a^2}} \cos(\omega t + ec p \cdot ec x + \phi)$$

• Many aspects of nuclear physics depend on θ , for example:

$$egin{aligned} &d_n \simeq rac{g_{\pi NN}}{4\pi} igg(rac{e}{m_p f_\pi}igg) \lnigg(rac{m_
ho}{m_\pi}igg)igg(rac{m_u m_d}{m_u + m_d}igg) heta \ &M_\pi^2(heta) = M_\pi^2 \cosrac{ heta}{2} \sqrt{1 + arepsilon^2 ext{tan}^2 rac{ heta}{2}} \ &m_n - m_p \simeqigg(1.29 + 0.21 heta^2 + \mathcal{O}igg(heta^4igg)igg) ext{MeV} \end{aligned}$$

Nuclear decay is random and spontaneous:

Isotope	Decay	Detector Type	Detected	Observations	Institution	Reference
$^{3}\mathrm{H}$	β^{-}	Liquid Scintillator	β^{-}	1yr, 12.1yr, 18d, 42d, 12.51yr	Novi Sad, Purdue, US- AFA, Karpov, MSU	$\begin{matrix} [32], & [68], & [75], \\ [169], & [135] \end{matrix}$
$^{3}\mathrm{H}$	β^{-}	Photodiodes	β^{-}	lyr	Purdue, Uhldingen, OPC,	$[\underline{68}]$, $[\underline{41}]$, $[\underline{64}]$,
$^{3}\mathrm{H}$	β^{-}	Solid State	β^{-}	2yr	Purdue, KIT	[64] , [80]
$^{14}\mathrm{C}$	β^{-}	Liquid Scintillator	β	No effect	Khalifa, USAFA	[48], [75]
$^{18}\mathrm{F}$	β^+	Ion Chamber	γ	No effect	PTB	[127]
22 Na	β^+	Solid State (Ge)	γ	1yr	Berkeley	[97]
22 Na	β^+	HPGe	γ	No effect	Novi Sad , Berkeley	[70] , [94]
22 Na	β^+	Geiger Müller	β^{-}	No effect	BYU,	[84], [31], [123]
$^{32}\mathrm{Si}$	β^{-}	Scintillation	γ	GW inspiral, <mark>1yr</mark>	Purdue, BNL	[42] , $[1]$
32 Si	β^{-}	Ge(Li)	γ	lyr	CRIM	[24]
³² Si	β^{-}	Proportional	β^{-}	1yr	BNL	[1], [54], [66], [146]
$^{32}\mathrm{Si}/^{36}\mathrm{Cl}$	β^{-}	Proportional	β^{-}	No effect	Wadworth Center	[133]
$^{32}\mathrm{Si}/^{36}\mathrm{Cl}$	β^{-}	Ion Chamber	γ	27d, 1yr,	PTB	[151], [147]
^{36}Cl	β^{-}	Proportional	β^{-}	1yr, 11.71yr, 2.11yr	Purdue, BNL	[68], [88], [64],
$^{36}\mathrm{Cl}$	β^{-}	Scintillation	γ	GW inspiral	Purdue	[42]
^{36}Cl	β^{-}	Scintillation	γ	<u>No</u> effect	PT B	[73]
$^{36}\mathrm{Cl}$	β^{-}	Geiger Müller	β^{-}	1yr	Purdue	[65], [68], [88]
$^{36}\mathrm{Cl}$	β^{-}	Geiger Müller	β^{-}	No effect	BYU	[31]
40 K	β^-, EC	NaI Crystal	γ	No effect	TBD	[26], [30], [28]
44 Ti	\mathbf{EC}	NaI(TI)	γ	No effect	Zurich, Amsterdam	[34], $[9]$
44 Ti	EC	HPGe	γ	No effect	Berkeley	[94]
54 Mn	\mathbf{EC}	Scintillation	γ	Solar flare	Purdue	[61]
54 Mn	EC	Scintillation	γ	lyr	Purdue, Baylor	[64], [38]
56 Mn	\mathbf{EC}	Scintillation	γ	1yr	Purdue	[64]
55 Fe	\mathbf{EC}	Scintillation	γ	No effect	PTB	[71]
60 Co	β^+	NaI(TI)	γ	No effect	Zurich, Amsterdam	[34], [9]
60 Co	β^+	NaI(TI)	γ	1d, 27d, 1yr	CRIM	[23], [24]
⁶⁰ Co	β^+	Scintillation	γ	1d, 12.11yr, 10d, 20d, 27d	CRIM	[20], [21]
60 Co	β^+	HPGe	γ	1yr	IMS	[76]
56 Co	β^+	Ge(Li)	γ	No effect	BNL	[2]
60 Co	β^+	Geiger Müller	β^{-}	1yr	LMSU	[103],[104]
60 Co	β^+	Geiger Müller	β^{-}	No effect	BYU	[31]

"Anomalies in Radioactive Decay Rates: A Bibliography of Measurements and Theory", arxiv: 2012.00153

A typical example: Radium-226

"Time-dependent nuclear decay parameters: New evidence for new forces?", *Space Sci.Rev.* 145 (2009) 285-335 "Anomalies in Radioactive Decay Rates: A Bibliography of Measurements and Theory", arxiv: 2012.00153

Reasons to be skeptical

- Explanations exist which don't require rewriting the foundations of physics
- Did seasonal variations in atmospheric conditions influence these experiments
- The data analysis here is quite subtle
- Is it possible these anomalies are due to incorrect statistical treatment?

Let's do our own analysis!

Tritium decay

For simple nuclei, heta-dependence is calculable, let's consider tritium decay: ${}^{3}H \rightarrow {}^{3}\text{He} + e^{-} + \bar{
u}_{e}, t_{1/2} \simeq 12.3 \text{ years}, Q = 18.6 \text{keV}$ $\Gamma^{eta}({}^{3}\text{H}) = rac{1}{2\pi^{3}}m_{e}(G_{eta}m_{e}^{2})^{2}(B_{F}({}^{3}\text{H}) + B_{GT}({}^{3}\text{H}))I^{eta}({}^{3}\text{H})$ $I^{eta}({}^{3}\text{H}) = rac{1}{m_{e}^{5}}\int_{m_{e}}^{E_{\text{max}}}F_{0}(Z+1, E_{e})p_{e}E_{e}(E_{\text{max}} - E_{e})^{2}dE_{e}$

The underlying quantity of interest is the fractional change in the beta decay rate:

$$I_0(heta)\equiv rac{\Gamma(heta)-\Gamma(0)}{\Gamma(0)}$$

• Where does θ -dependence primarily enter?

$$I^eta \left({}^3\mathrm{H}
ight) = rac{1}{m_e^5} \int_{m_e}^{E_\mathrm{max}} F_0 \left(Z+1, E_e
ight) p_e E_e (E_\mathrm{max}-E_e)^2 dE_e$$

Emax is the maximum possible electron energy

- θ changes the decay rate here by modifying ${}^{3}\mathrm{H}/{}^{3}\mathrm{He}$ binding energies
- Fortunately for 3 and 4 nucleon systems this is already estimated

three and four-nucleon systems the n-nucleon binding energy satisfies : $ar{B}_n(heta)^{1/4} - ar{B}_2(heta)^{1/4} = ar{B}_n(0)^{1/4} - ar{B}_2(0)^{1/4}$

heta-dependence of light nuclei and nucleosynthesis, 2006.12321

Knowing the θ -dependence of the binding energy, we can then calculate the energy shift by add a perturbation $\delta E(\theta)$ to Emax :

$$E_{
m max} = rac{M_i^2 + m_e^2 - \left(M_f + m_v
ight)^2}{2M_i}$$

Mi and Mf are the masses of the initial and final nuclear states:

$$M_{i/f} = \sum_N m_N(heta) - B(heta)_{i/f}$$

$$egin{aligned} E_{ ext{max}} &\simeq E_{ ext{max}} |_{\delta M_{i/f}=0} + \delta M_i rac{M_i^2 - m_e^2 + \left(M_f + m_v
ight)^2}{2M_i^2} - \delta M_f rac{M_f + m_v}{M_i} \ E_{ ext{max}} &\simeq E_{ ext{max}} |_{\delta M_{i/f}=0} + \delta M_i - \delta M_f \end{aligned}$$

The corresponding shift in the decay energy: $\delta E(heta) \simeq \delta M_i - \delta M_f$

$$egin{aligned} E_{ ext{max}}(heta) &\simeq E_{ ext{max}}(0) + \delta E(heta) \ &= (m_n - m_p)(heta) - B_i(heta) + B_f(heta) \simeq 0.53 - 0.51 heta^2 ext{MeV} \end{aligned}$$

• Add a perturbation
$$\delta E(\theta)$$
 to $E_i - E_f$: $\Gamma(\theta) = \int_{m_e}^{E_{\max} + \delta E(\theta)} dE_e \frac{d\Gamma}{dE_e}$
 $I_0(\theta) \equiv \frac{\Gamma(\theta) - \Gamma(0)}{\Gamma(0)} \simeq \frac{\delta I^{\beta}(\theta)}{I^{\beta}(0)}$
 $\frac{\delta \Gamma^{\beta}}{\Gamma^{\beta}} = 1 - \frac{5\delta E(\theta) \left(E_f^2 - 2E_f(E_i + m_e) + E_i^2 + 2E_im_e + 3m_e^2\right)}{(E_f - E_i + m_e) \left(3m_e(E_i - E_f) + (E_f - E_i)^2 + 6m_e^2\right)} + \mathcal{O}(\delta E^2)$
(Using Primakoff-Rosen approximation for F_0)

• From the previous slide, we know how δE depends on θ , and the corresponding shift in the decay energy is:

$$egin{split} \delta E \simeq \mu \mathrm{eV}igg(rac{
ho_{DM}}{0.4 \mathrm{GeV}/\mathrm{cm}^3}igg)igg(rac{10^{16}\mathrm{GeV}}{f_a}igg)^2igg(rac{10^{-22}\mathrm{eV}}{m_a}igg)^2\cos(2\omega t)\ I_0(heta)ert_{3_H}\simeq 0.18igg(rac{\delta E(heta)}{\mathrm{keV}}igg) \end{split}$$

• So, now all we need is some tritium data...

Why Tritium?

• Decays with smaller $Q \equiv M_i - M_f - m_e$ resulted in a larger fractional change in the beta decay rate.

Candidates for Low Q nuclides:

H-3, Q=18.6keV Re-187, Q=2.6keV Pu-241, Q=20.8keV

$$\begin{split} \frac{\delta\Gamma}{\Gamma_{0}}\Big|_{3_{\mathrm{H}}} &= \frac{\int_{m_{e}}^{E_{i}-E_{f}+\delta E}F_{0}\left(Z+1,E_{e}\right)p_{e}E_{e}(E_{i}-E_{f}+\delta E-E_{e})^{2}\,\mathrm{d}E_{e}}{\int_{m_{e}}^{E_{i}-E_{f}}F_{0}\left(Z+1,E_{e}\right)p_{e}E_{e}(E_{i}-E_{f}-E_{e})^{2}\,\mathrm{d}E_{e}} \\ &\approx 0.18428\times\left(\frac{\delta E}{1\mathrm{keV}}\right), \quad |\delta E| \ll 18.6\mathrm{keV} \end{split}$$

$$\begin{split} \frac{\delta\Gamma}{\Gamma_{0}}\Big|_{187_{\mathrm{Re}}} &= \frac{\int_{m_{e}}^{E_{i}-E_{f}+\delta E^{2}}F_{1}\left(Z+1,E_{e}\right)p_{e}^{3}E_{e}(E_{i}-E_{f}+\delta E-E_{e})^{2}\,\mathrm{d}E_{e}}{\int_{m_{e}}^{E_{i}-E_{f}}F_{1}\left(Z+1,E_{e}\right)p_{e}^{3}E_{e}(E_{i}-E_{f}-E_{e})^{2}\,\mathrm{d}E_{e}} \\ &\approx 1.15896\times\left(\frac{\delta E}{1\mathrm{keV}}\right), \quad |\delta E| \ll 2.6\mathrm{keV} \end{split}$$

Experimental setup

Laboratory liquid scintillator counter

1 microcurie of tritium

Courtesy of the European Union's Joint Research Centre, at the Directorate for Nuclear Safety and Security in Belgium

Tritium decay data

 $I(t) \equiv \frac{N(t) - \langle N \rangle}{\langle N \rangle}$

Data is from the European Union's Joint Research Centre, at the Directorate for Nuclear Safety and Security in Belgium

Lomb-Scargle periodogram

Least Squares Spectral Analysis (LSSA) method

• Let's convert the data into frequency space:

• Is there evidence of periodic effects here?

- Let's compare the real data to Monte Carlo simulations:
- 1. Generate N datasets with randomly generated I(t)
- 2. For each dataset, convert to frequency space
- 3. Construct the CDF at each frequency
- 4. Find the 95 % CL limit (including look-elsewhere)
- 5. Compare to the real power at that frequency
- For example:

• From Monte Carlo simulations:

 We can see that the real data points (blue) are all below the 95 % CL limit (orange), and hence well-modelled by random noise

No evidence of non-random behaviour

• Repeating this with an injected axion signal:

• Varying the axion coupling allows us to find the threshold values

Resulting constraint

Resulting constraint

Resulting constraint

Interesting follow up work: α-decay of Americium-241

 $^{241}\mathrm{Am}
ightarrow ^{237}\mathrm{Np} + lpha + \gamma(59.5\mathrm{keV})$

Discussion and conclusions

- We have explored a new experimental signature for axion DM
- In 12 years of tritium decay data we find no evidence of this phenomenon
- We used the data to place constraints on axion DM
- Is nuclear decay random and spontaneous? Yes, probably...

More details in 2303.09865

Thanks for listening!

Appendix

Compare the real data to Monte Carlo simulations:

- 1. Generate N datasets with randomly generated I(t)
- 2. For each dataset, convert to frequency space
- 3. Construct the CDF at each frequency
- 4. Find the 95 % CL limit (including look-elsewhere)
- 5. Compare to the real power at that frequency
- For example:

Original data, Monte Carlo data

Lomb-Scargle periodogram

• Repeat N times to estimate the power PDF at each frequency

• Integrate to get the power CDF:

Power