Geomagnetic Signal of Millicharged Dark Matter and its Detection

Bin Zhu

@The Third Symposium on HEP DaLian November 2, 2024

Discover the world at Yantai University

1 / 22

Sac

Main structure in one slide

Objective:

Demonstrate a novel mechanism (magnetic signal) to detect ultralight millicharged dark matter, leveraging the Earth as a transducer (atmospheric cavity) (2411.xxxx) with Ariel Arza, Yuanlin Gong, Jing Shu and Lei Wu.

Dark Matter Landscape

From Benjamin V. Lehmann

Why Ultralight Dark Matter

Small Scale Problem: Fuzzy Dark Matter Candidate

Comparison of cosmological large-scale structures formed by standard CDM and by wavelike DM

A slice of density field of wave DM simulation

Radial density profiles of haloes formed in the wave DM model

Image: A math a math

Schive, Chiueh, Broadhurst, 1406.6586

Why Ultralight Dark Matter

Strong CP Problem

- Naive estimation: $10^{-16}e$ cm, Exp: $3 \times 10^{-26}e$ cm
- The best explanation: New U(1) axial symmetry, that when broken, cancels CP violation in the strong sector (Pecci, Quinn, 1977)
- Consequence: New particle, called the axion (Weinberg, Wilczek, 1978)

What is Ultralight Dark Matter

We define ultralight dark matter (ULDM) as bosonic DM candidates with $m < {
m eV}$

Sac

э

イロト イロト イヨト イヨト

ULDM Candidates

Many extensions of the Standard Model predict additional massive bosons, Ref.: Chadha-Day et al 2022

Why and What is millicharged scalar dark matter (MCDM)?

Sac

э

イロト イポト イヨト イヨト

Why MCDM?

- Is electric charge quantized and why? A long-standing question! Testing whether or not e/3 is the minimal charge.
- MCP could have natural link to dark sector (massless dark photon, etc.)

Used for the cooling of gas temperature to explain the EDGES anomaly

MCDM 101

• MCDM is some relic charged under a dark U(1).

$$f_{\chi} = \frac{\rho_{\rm MCDM}}{\rho_{\rm DM}} \sim 0.0001 - 1$$

• Through kinetic mixing $\left(F_{\mu\nu}F^{\mu\nu} + \epsilon (F')_{\mu\nu}F^{\mu\nu} + (F')_{\mu\nu}(F')^{\mu\nu}\right)$ with our own photon, MCDM acquires an effective charge

$$q_{\rm eff} = Q \propto \epsilon$$

We are only probing MCDM here! Minimal assumptions. Most robust constraints.

$$\mathcal{L} = D_{\mu}\phi(D^{\mu}\phi)^{*} - m_{\phi}^{2}|\phi|^{2} - \frac{1}{4}F_{\mu\nu}F^{\mu\nu}$$

Production Mechanism

How to naturally generate ultralight MCDM in the cosmos

Freeze-in works for keV to TeV-scale MCDM

- X. Chu, T. Hambye and M.H.G. Tytgat, The Four Basic Ways of Creating Dark Matter Through a Portal, [arXiv:1112.0493]
- ► W. Feng, Z. Zhang, K. Zhang, Sub-GeV millicharge dark matter from the U(1)_X hidden sector, [2312.03837]

Misalignment works for sub-eV MCDM Zachary Bogorada and Natalia Toro, arXiv:2112.11476

Earth as a transducer

A natural vacuum cavity: Formed between the inner conducting sphere of the Earth and the conducting ionospheric layer

11 / 22

Sac

э

Effective Current

Just a EM problem with a background current!

In non-relativistic limit, effects of ultralight DM given by

$$\nabla \times \mathbf{B} - \partial_t \mathbf{E} = \mathbf{J}_{\text{eff}}, \quad \partial_\mu F^{\mu\nu} = J^{\mu}_{\text{eff}}$$

For dark-photon dark matter,

$$\mathbf{J}_{\rm eff} = -\varepsilon m_{A'}^2 \mathbf{A}'$$

For axion-like dark matter,

$$\mathbf{J}_{\rm eff} = i g_{a\gamma} m_a a \mathbf{B}_0$$

 For MCDM, originated from the interaction between the MCDM and the geomagnetic filed

$$J_{\text{eff}}^{\mu} = 2e_m^2 \mathcal{A}^{\mu} |\phi|^2, \quad \mathcal{A}_{\mu} = (\mathcal{A}_0, -\vec{\mathcal{A}})$$

The current depends on \mathcal{A}^{μ} rather than B, thus the gauge choice, giving us infinite possible solutions!

Gauge Invariance

The correct way is to include the MCDM current

$$J_m^{\nu} = i e_m \left(\phi^* \partial^{\nu} \phi - \phi \partial^{\nu} \phi^* \right).$$

The MCDM can be solved via equation of motion

$$\Box \phi = -ie_m \partial_\mu \mathcal{A}^\mu \phi - 2ie_m \partial_\mu \phi \mathcal{A}^\mu + e_m^2 \mathcal{A}_\mu \mathcal{A}^\mu \phi$$

• For a different gauge choice $\mathcal{A}'_{\mu} = \mathcal{A}_{\mu} + \partial_{\mu}\Lambda$, correspondingly $\phi' = \phi e^{-ie_m\Lambda}$, so that

$$J_m^{\mu\prime} + J_{\text{eff}}^{\mu\prime} = J_m^{\mu} + J_{\text{eff}}^{\mu}$$

How to probe MCDM

a monochromatic magnetic signal with spatial dependence of a particular vector spherical harmonics

Sac

э

イロト イヨト イヨト

Rough Estimate

Why MCDM has much better sensitivity than dark photon and axion

Ampere law

$$\int {f B} \cdot {f d} \ell = \iint {f d} {f A} \cdot {f J}$$

Simple dimensional analysis

$$BR \approx R^2 e_m^2 (B_0 R) \phi_0^2 \rightarrow B \sim 100 \text{ pT}$$

Rough sensitivity for Vector Magnetoresistive (VMR) sensors

 $300 \mathrm{pT}/\sqrt{\mathrm{Hz}}$ over the frequency $0.1-100~\mathrm{Hz}$

While for dark photon (proportional to mass) and axion (independent to mass)

The lower mass, the better sensitivity for MCDM

Our basic motivation for MCDM

Sac

Computational Framework

Vector potential in the vector spherical harmonics bases

Expand geomagnetic field in terms of VSH

$$\vec{B}_{0}(\vec{x}) = \sum_{\ell,m} \left(B_{\ell,m}^{(r)}(r) \vec{Y}_{\ell m}(\theta,\varphi) + B_{\ell,m}^{(1)}(r) \vec{\Psi}_{\ell m}(\theta,\varphi) + B_{\ell,m}^{(2)}(r) \vec{\Phi}_{\ell m}(\theta,\varphi) \right)$$

The curl of the background vector potential is expressed as

$$\vec{\nabla} \times \vec{A}^{(0)} = \sum_{\ell,m} \left(-\frac{\ell(\ell+1)}{r} A_{\ell m}^{(2)} \vec{Y}_{\ell m} - \left(\frac{dA_{\ell m}^{(2)}}{dr} + \frac{A_{\ell m}^{(2)}}{r} \right) \vec{\Psi}_{\ell m} + \left(-\frac{A_{\ell m}^{(r)}}{r} + \frac{dA_{\ell m}^{(1)}}{dr} + \frac{A_{\ell m}^{(1)}}{r} \right) \vec{\Phi} \right)$$

• Identifying both terms yields (The last equation comes from the gauge condition $\nabla \cdot \vec{A}^{(0)} = 0$)

$$\begin{split} &-\frac{\ell(\ell+1)}{r}A_{\ell m}^{(2)}=B_{\ell m}^{(r)}(r),\\ &\frac{dA_{\ell m}^{(2)}}{dr}+\frac{A_{\ell m}^{(2)}}{r}=B_{\ell m}^{(1)}(r), \quad \text{redundant from} \quad \nabla\cdot\vec{B}^{(0)}=0\\ &\frac{dA_{\ell m}^{(1)}}{dr}+\frac{A_{\ell m}^{(1)}}{r}-\frac{A_{\ell m}^{(r)}}{r}=B_{\ell m}^{(2)}(r);\\ &\frac{dA_{\ell m}^{(r)}}{dr}+\frac{2A_{\ell m}^{(r)}}{r}-\ell(\ell+1)\frac{A_{\ell m}^{(1)}}{r}=0. \end{split}$$

< (17) × <

Computational Framework

Solving for the vector potential

► The first equation is easy to solve

$$A_{\ell m}^{(2)} = -\frac{r}{\ell(\ell+1)} B_{\ell m}^{(r)}(r)$$

► For the last two equations

$$\frac{\left(r^2 (rA_{\ell m}^{(1)})'\right)'}{r^3} - \frac{\ell(\ell+1)}{r^2} A_{\ell m}^{(1)} = \frac{1}{r^3} \left(r^3 B_{\ell m}^{(2)}\right)'$$

Due to Green function

$$A_{\ell m}^{(1)} = \int dr' G_{\ell}(r,r') \frac{1}{r'^3} \left(r'^3 B_{\ell m}^{(2)}(r') \right)'$$

with

$$G_{\ell}(r,r') = -\frac{1}{2\ell+1} \begin{cases} \frac{r^{\ell-1}}{r'^{\ell-2}}, & r < r' \\ \frac{r'^{\ell+2}}{r'^{\ell+2}}, & r > r' \end{cases}$$

Sac

▶ < ∃ >

Image: A math a math

Geomagnetic Signal

In the cavity range of R < r < R + h:

Effective current

$$\vec{J}_{\rm eff} \, = \left(J_{10}^{(r)}(r)\mathbf{Y}_{10} + J_{10}^{(1)}(r)\boldsymbol{\Psi}_{\ell m} + \sum_{\ell m} J_{\ell m}^{(2)}(r)\boldsymbol{\Phi}_{\ell m}\right) 2e_m^2\phi_0^2 e^{-i\omega t}$$

Geomagnetic signal

$$\vec{B}_{\ell m}^{(2)}(R) = -2e_m^2\phi_0^2 R^2 b_{\rm oc}\Phi_{10}e^{-i\omega t}$$

▶ For SuperMAG and SNIPE experiment, the exclusion limits become

$$\begin{split} e_m \lesssim & \left(\frac{6372.1 \text{ km}}{R}\right)^{\frac{3}{2}} \cdot \left(\frac{0.3 \text{GeV/cm}^3}{\rho}\right)^{\frac{1}{2}} .\\ & \cdot \begin{cases} 10^{-29} \cdot \left(\frac{m_{\phi}}{10^{-17} \text{eV}}\right)^{\frac{1}{2}} , & \text{SuperMAG} \\ 10^{-27} \cdot \left(\frac{m_{\phi}}{5 \times 10^{-15} \text{eV}}\right)^{\frac{1}{2}} , & \text{SNIPE} \end{cases} \end{split}$$

< 4 ₽ > < 3

- (E

Result

э.

590

Backup Slides

Discover the world at Yantai University

・ロト ・ 一下・ ・ ヨト・

Previous Search

Big-bang nucleosynthesis

Particles with small electric charge will interact with the plasma in the early universe contributing to $\Delta N_{\rm eff}$

 Stellar evolution of Red Giant Plasma decay process affect the Stellar evolution

Territorial Experiment

Lamb Shift, Coulomb's Law, invisible decay of ortho-positronium

< A

Background Geomagnetic field

IGRF model

$$\vec{B}_0(\vec{x}) = \sum_{\ell,m} C_{\ell m} \left(\frac{R}{r}\right)^{\ell+2} \left((\ell+1) \vec{Y}_{\ell m}(\theta,\varphi) - \vec{\Psi}_{\ell m}(\theta,\varphi) \right)$$

• It actually determines $A_{\ell m}^{(2)}$. However, the other two requires integrating over the whole earth, thus inner geomagnetic field becomes relevant

22 / 22

イロト イポト イヨト イヨト