Dark Matter and New Physics at Neutrino Experiments

- **Ningqiang Song**
 - 宋宁强
- **Institute of Theoretical Physics, Chinese Academy of Sciences**
 - **November 3, 2024**

Neutrino Experiments

JUNO

- Large exposure
- Different thresholds

Super-Kamiokande

IceCube

Atmospheric beam dump and new physics

- Hadrophilic dark matter
- Axion-like particles
- Long-lived neutralinos
- Monopoles
- Dark photon

Millicharged particles

Atmospheric Beam Dump

Dark Photon Kinetic Mixing

Extra U(1)? $SU(3)_c \times SU(2)_L \times U$

$$\mathscr{L} = -\frac{1}{4} (F_{\mu\nu}F^{\mu\nu} - 2\kappa F_{\mu\nu}F^{'\mu\nu} + F_{\mu\nu}'F^{'\mu\nu}) + \frac{m_{A'}^2}{2}A_{\mu}'A^{'\mu} - J^{\mu}A_{\mu}$$

$$V(1)_Y \times U(1)'$$

Pospelov' 2008 Ackerman, Buckley, Carrol, Kamionkowsk' 2008 Arkani-Hame, Finkbeine, Slatyer, Weiner' 2008

$$= -\frac{g'g_X}{16\pi^2} \sum_i Y_i q_i \ln \frac{M_i^2}{\mu^2} \sim 10^{-1} - 10^{-1}$$

Millicharge Particles

Massless dark photon $\mathcal{L}_0 = -\frac{1}{4}F_{a\mu\nu}F_a^{\mu\nu} - \frac{1}{4}$

$$\begin{pmatrix} A_a^{\mu} \\ A_b^{\mu} \end{pmatrix} = \begin{pmatrix} \frac{1}{\sqrt{1-\varepsilon^2}} & 0 \\ -\frac{\varepsilon}{\sqrt{1-\varepsilon^2}} & 1 \end{pmatrix} \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} A'^{\mu} \\ A^{\mu} \end{pmatrix}$$

$$\mathcal{L}' = \left[\frac{e'\cos\theta}{\sqrt{1-\varepsilon^2}}J'_{\mu} + e\left(\sin\theta - \frac{\varepsilon\cos\theta}{\sqrt{1-\varepsilon^2}}\right)J_{\mu}\right]A'^{\mu} \\ + \left[-\frac{e'\sin\theta}{\sqrt{1-\varepsilon^2}}J'_{\mu} + e\left(\cos\theta + \frac{\varepsilon\sin\theta}{\sqrt{1-\varepsilon^2}}\right)J_{\mu}\right]A^{\mu}$$

$$\left[\mathcal{L}' = e' J'_{\mu} A'^{\mu} + \left[-\frac{e'\varepsilon}{\sqrt{1-\varepsilon^2}} J'_{\mu} + \frac{e}{\sqrt{1-\varepsilon^2}} J_{\mu} \right] A^{\mu} \right]$$

Fabbrichesi et al arXiv: 2005.01515

$$\frac{1}{4}F_{b\mu\nu}F_b^{\mu\nu} - \frac{\varepsilon}{2}F_{a\mu\nu}F_b^{\mu\nu} \qquad \qquad \mathcal{L} = e\,J_\mu A_b^\mu + e'J'_\mu A_b^\mu$$

Millicharge Particles from Light Meson Decay

$$\Phi_{\mathfrak{m}}(\gamma_{\mathfrak{m}}) = \Omega_{\text{eff}} \int \mathcal{I}_{\text{CR}}(\gamma_{\text{cm}}) \frac{\sigma_{\mathfrak{m}}(\gamma_{\text{cm}})}{\sigma_{\text{in}}(\gamma_{\text{cm}})} P(\gamma_{\mathfrak{m}}|\gamma_{\text{cm}}) \, \mathrm{d}\gamma_{\text{cm}}$$
$$\gamma_{\text{cm}} = \frac{1}{2} \sqrt{s} / m_p$$
$$P(\gamma_{\mathfrak{m}}|\gamma_{\text{cm}}) \approx \sum_{\alpha} \frac{1}{\sigma_{\mathfrak{m}}} \times \frac{\mathrm{d}\sigma_{\mathfrak{m}}}{\mathrm{d}x_F} \times \frac{\mathrm{d}x_F^{(\alpha)}}{\mathrm{d}\gamma_{\mathfrak{m}}}$$

Plestid et al PRD/2002.11732

Millicharge Particles from Upsilon Meson Decay

Pythia8 simulations

Wu, Hardy, **NS**, arXiv: 2406.01668

Millicharge Particles from Proton Bremsstrahlung

Fermi-Weizsacker-Williams (FWW) approximation with the splitting-kernel approach

Du et al arXiv: 2308.05607

Millicharge Particles from Drell-Yan Process

Madgraph simulations

Wu, Hardy, **NS**, arXiv: 2406.01668

Millicharge Particles Flux

Meson decay+Proton Bremsstrahlung+Drell-Yan

11

Wu, Hardy, **NS**, arXiv: 2406.01668

Earth Attenuation

For $\epsilon^2 \gtrsim 10^{-2}$, the down-going flux becomes significantly attenuated

Wu, Hardy, **NS**, arXiv: 2406.01668

Single Scatter Constraint

Assuming JUNO 10 MeV threshold+170 kton·yr exposure

Wu, Hardy, **NS**, arXiv: 2406.01668

Arguelles et al JHEP/2104.13924

Multiple Scatter Constraint

Single scatter probability $P_1 =$

Multiple scatter probability $P_{n\geq 2}$

Number of observed events N_{multiple}

$$N_{\text{single}}\left(m_{\chi},\epsilon\right) = N_{e}T \int_{E_{i,\min}}^{E_{i,\max}} dE_{r}\epsilon_{D}(E_{r}) \times \int dE_{\chi}d\Omega \Phi_{\chi}^{D}\left(E_{\chi},\Omega\right) \frac{d\sigma_{\chi e}}{dE_{r}}$$

$$1 - \exp\left(-\frac{L_D}{\lambda(T_{\min})}\right)$$
$$(T_{\min}) = 1 - \exp\left(-\frac{L_D}{\lambda}\right)\left(1 + \frac{L_D}{\lambda}\right)$$

$$_{\text{ti}} = N_{\text{single}} P_{n \ge 2} (T_{\min, \text{multi}}) / P_1 (T_{\min, \text{single}})$$

Multiple Scatter Constraint

Assuming JUNO 170 kton·yr exposure Wu, Hardy, NS, arXiv: 2406.01668

Glashow Resonance (GR)

When the centre of mass energy is close to W boson mass, $\bar{\nu}_e$ -electron interaction is enhanced by the resonant production of W

$$\sigma_{\overline{\nu}_e e}(s) = 24\pi \, \Gamma_W^2 \, \text{Br}(W^- \to \overline{\nu}_e + e^-) \\ \times \frac{s/M_W^2}{(s - M_W^2)^2 + (M_W \Gamma_W)^2} \,,$$

Huang, Liu, 1912.02976

Glashow Resonance at IceCube

Article Published: 10 March 2021

Detection of a particle shower at the Glashow resonance with IceCube

The IceCube Collaboration

<u>Nature</u> 591, 220–224 (2021) Cite this article

16k Accesses | 63 Citations | 507 Altmetric | Metrics

- Glashow resonance candidate was identified with 2.3 σ significance assuming E^{-2.5} spectrum
- The cascade is partially contained (PEPE), with muon early pulses consistent with W decay

Asymmetric Dark Matter Decay

Credit: Qinrui Liu

 $l\psi^n$

Asymmetric Dark Matter Decay

Liu, **NS**, Vincent, arXiv: 2406.14602

Summary

- large exposure
- SuperK
- Search for heavy dark matter decay at IceCube

Neutrino experiments could be powerful probes of dark matter thanks to their

Search for millicharged particles from atmospheric beam dump at JUNO and

Heavy neutral leptons

Type-I seesaw $\mathcal{L}_N = \mathcal{L}_{SM} + \sum_j i \bar{N}_j$ Neutrino mass $m_\nu \propto \frac{(Y\nu)^2}{m_N}$

Meson and lepton decay

$$M \rightarrow l + N$$

$$\tau \to l + \nu + N$$

Coloma et al EPJC/1911.09129

$$\bar{U}_{j}\gamma^{\mu}\partial_{\mu}N_{j} - \left(Y_{\alpha j}\bar{L}_{\alpha}\tilde{\Phi}N_{j} + \frac{m_{N_{j}}}{2}\bar{N}_{j}N_{j}^{c}
ight)$$

mixing $U_{\alpha j} \propto \frac{Y\nu}{m_{N}}$
 0^{-5}

Heavy neutral leptons

Coloma et al EPJC/1911.09129

Hydrophilic dark matter

Hydrophilic dark matter

 $S \rightarrow 2\chi$ Dark matter scatters at neutrino and dark matter detectors

Arguelles et al PLB/2203.12630

Hydrophilic dark matter

Including both elastic and quasi-elastic scattering in the overburden

PandaX PRL/2301.03010

Su et al PRD/2006.11837

Axion-like particles

 $\mathcal{L} \supset -ig_{a\mu\mu}aar{\mu}\gamma_5\mu$

$$\mathcal{L}_{\text{loop}} \supset -\frac{1}{4} g_{a\gamma\gamma}^{\text{eff}} a F^{\mu\nu} \tilde{F}_{\mu\nu}$$

$$g_{a\gamma\gamma}^{\text{eff}} = \frac{g_{a\mu\mu}\alpha}{m_{\mu}\pi} \left[1 - \frac{4m_{\mu}^2}{m_a^2} \operatorname{arcsin}^2 \left(\frac{m_a}{2m_{\mu}} \right) \right]$$
$$\tau_a = \Gamma_{a\rightarrow\gamma\gamma}^{-1} = \frac{64\pi}{\sqrt{\pi}}$$

 $a - a \rightarrow \gamma \gamma - (g_{a\gamma\gamma}^{\text{eff}})^2 m_a^3$

Cheung et al PRD/2208.05111

Axion-like particles

Two electron-like Chenrekov rings at neutrino detectors

Long-lived neutralinos

 \overline{d}_k

 u_j

 ${\rm Br}({\rm M} \to \tilde{\chi}^0_1 + {\rm e})^{-1}$

 $\mathcal{L} \supset \lambda_{ijk}' \widehat{L}_i \widehat{Q}_j \widehat{D}_k^c$

	1	1	1	-1 _S -1 _{Sr} -1
	RPV coupling	Production	Decay mode] _rg
B1	$\lambda_{121}',\lambda_{112}'$	$D^{\pm} \xrightarrow{\lambda'_{121}} e^{\pm} + \tilde{\chi}_1^0$	$ \begin{aligned} \tilde{\chi}_{1}^{0} \xrightarrow{\lambda_{121}'} K_{S}^{0} + \nu_{e} \\ \tilde{\chi}_{1}^{0} \xrightarrow{\lambda_{121}'} K^{*0} + \nu_{e} \\ \tilde{\chi}_{1}^{0} \xrightarrow{\lambda_{112}'} K^{(*)+} + e^{-} \\ \tilde{\chi}_{1}^{0} \xrightarrow{\lambda_{112}'} K_{S}^{0} + \nu_{e} \\ \tilde{\chi}_{1}^{0} \xrightarrow{\lambda_{112}'} K^{*0} + \nu_{e} \end{aligned} $	$d\Phi_{\widetilde{\chi}_1^0}$ [GeV ⁻
B2	$\lambda_{112}',\lambda_{111}'$	$K^{\pm} \xrightarrow{\lambda'_{112}} e^{\pm} + \tilde{\chi}^0_1$	$ \begin{aligned} &\tilde{\chi}_1^0 \xrightarrow{\lambda'_{111}} \pi^+ + e^- \\ &\tilde{\chi}_1^0 \xrightarrow{\lambda'_{111}} \pi^0 + \nu_e \end{aligned} $	$\tilde{\chi}_{1}^{0} + e)^{-1}$

Cheung et al PRD/2208.05111

Long-lived neutralinos

Candia et al PRD/2107.02804

Magnetic monopoles

Iguro et al PRL/2111.12091

Magnetic monopoles

$$\sigma(pp \to M\overline{M}) = \kappa \times \sigma_{\rm sim}$$

Iguro et al PRL/2111.12091

Dark photon

Luc Darmé PRD/2205.09773

$$v_{\rm res} = \frac{2\pi^2 \varepsilon^2 \alpha_{\rm em}}{m_e} \delta(E_+ - \frac{m_V^2}{2m_e}) \equiv \tilde{\sigma}_{\rm res} \delta(E_+ - E_{\rm res})$$

$$10^{-3} \int_{\omega}^{\alpha_D = 0.5, m_V = 3m_X} \int_{WACH, turn BooNE} \int_{WACH, turn BooN$$

Millicharge particles from light meson decay

$$\Phi_{\chi}(\gamma_{\chi}) = 2\sum_{\mathfrak{m}} \operatorname{BR}(\mathfrak{m} \to \chi \bar{\chi}) \int \mathrm{d}\gamma_{\mathfrak{m}} \Phi_{\mathfrak{m}}(\gamma_{\mathfrak{m}}) P(\chi_{\mathfrak{m}}) = 2\sum_{\mathfrak{m}} \operatorname{BR}(\mathfrak{m} \to \chi \bar{\chi}) \int \mathrm{d}\gamma_{\mathfrak{m}} \Phi_{\mathfrak{m}}(\gamma_{\mathfrak{m}}) P(\chi_{\mathfrak{m}}) = 2\sum_{\mathfrak{m}} \operatorname{BR}(\mathfrak{m} \to \chi \bar{\chi}) \int \mathrm{d}\gamma_{\mathfrak{m}} \Phi_{\mathfrak{m}}(\gamma_{\mathfrak{m}}) P(\chi_{\mathfrak{m}}) = 2\sum_{\mathfrak{m}} \operatorname{BR}(\mathfrak{m} \to \chi \bar{\chi}) \int \mathrm{d}\gamma_{\mathfrak{m}} \Phi_{\mathfrak{m}}(\gamma_{\mathfrak{m}}) P(\chi_{\mathfrak{m}}) = 2\sum_{\mathfrak{m}} \operatorname{BR}(\mathfrak{m} \to \chi \bar{\chi}) \int \mathrm{d}\gamma_{\mathfrak{m}} \Phi_{\mathfrak{m}}(\gamma_{\mathfrak{m}}) P(\chi_{\mathfrak{m}}) = 2\sum_{\mathfrak{m}} \operatorname{BR}(\mathfrak{m} \to \chi \bar{\chi}) \int \mathrm{d}\gamma_{\mathfrak{m}} \Phi_{\mathfrak{m}}(\gamma_{\mathfrak{m}}) P(\chi_{\mathfrak{m}}) P(\chi_{\mathfrak{m}}) = 2\sum_{\mathfrak{m}} \operatorname{BR}(\mathfrak{m} \to \chi \bar{\chi}) \int \mathrm{d}\gamma_{\mathfrak{m}} \Phi_{\mathfrak{m}}(\gamma_{\mathfrak{m}}) P(\chi_{\mathfrak{m}}) P(\chi_{\mathfrak{m}}) = 2\sum_{\mathfrak{m}} \operatorname{BR}(\mathfrak{m} \to \chi \bar{\chi}) \int \mathrm{d}\gamma_{\mathfrak{m}} \Phi_{\mathfrak{m}}(\gamma_{\mathfrak{m}}) P(\chi_{\mathfrak{m}}) P(\chi_{\mathfrak{$$

Vector mesons $\rho, \omega, \phi, J/\psi$ decay to MCP pairs

$$\frac{\mathrm{BR}\left(\mathfrak{m}\to\chi\bar{\chi}\right)}{\mathrm{BR}\left(\mathfrak{m}\to\mu^{+}\mu^{-}\right)} = \epsilon^{2}\sqrt{\frac{m_{\mathfrak{m}}^{2}-4m_{\chi}^{2}}{m_{\mathfrak{m}}^{2}-4m_{\mu}^{2}}}$$
$$P\left(E_{\chi}|E_{\mathfrak{m}}\right) = \frac{1}{\Gamma_{\mathfrak{m}}}\frac{d\Gamma_{\mathfrak{m}}}{dE_{\chi}} = \frac{1}{E_{\chi}^{+}-E_{\chi}^{-}}$$

 η decay to MCP pairs+photon

$$BR(\eta \to \gamma \chi \chi) = 2\epsilon^2 \alpha BR(\eta \to \gamma \gamma) I^{(3)}\left(\frac{m_{\chi}^2}{m_{\eta}^2}\right)$$

$$\frac{1}{\Gamma_{\eta}}\frac{d\Gamma_{\eta}}{dz} = \frac{m_{\eta} - z}{72z^3 F_1(m_{\chi})}F_2(z, m_{\chi})$$

Plestid et al PRD/2002.11732

Single scatter

Elastic scattering

$$\frac{d\sigma_{\chi e}}{dE_r} = \pi \epsilon^2 \alpha^2 \frac{(E_r^2 + 2E_\chi^2)r}{dE_r}$$

$$N_{i}(m_{\chi}, \epsilon) = N_{e}T \int_{E_{i,\min}}^{E_{i,\max}} dE_{r}\epsilon_{D}(E_{r})$$
$$\times \int dE_{\chi}d\Omega\Phi_{\chi}^{D}(E_{\chi}, \Omega) \frac{d\sigma_{\chi e}}{dE_{r}}$$

Arguelles et al JHEP/2104.13924

Multiple scatter constraint

Assuming JUNO 170 kton·yr exposure Wu, Hardy, **NS**, arXiv: 2406.01668

Degeneracies at the high energy neutrino sources

Production	Source flavor ratio	Earth flavor ratio $\nu + \bar{\nu}$	Earth flavor ratio	$f_{ar{ u}_e}$
pp	$\{1,1\}:\{2,2\}:\{0,0\}$	0.33:0.34:0.33	$\{0.17, 0.17\}: \{0.17, 0.17\}: \{0.16, 0.16\}$	0.17
$pp\mu$ damped	$\{0,0\}:\{1,1\}:\{0,0\}$	0.23:0.39:0.38	$\{0.11, 0.11\}: \{0.20, 0.20\}: \{0.19, 0.19\}$	0.11
$p\gamma$	$\{1,0\}:\{1,1\}:\{0,0\}$	0.33:0.34:0.33	$\{0.26, 0.08\}: \{0.21, 0.13\}: \{0.20, 0.13\}$	0.08
$p\gamma\mu{ m damped}$	$\{0,0\}:\{1,0\}:\{0,0\}$	0.23:0.39:0.38	$\{0.23, 0.00\}: \{0.39, 0.00\}: \{0.38, 0.00\}$	0

- $p\gamma$ produces more neutrinos than antineutrinos $p + \gamma \rightarrow \Delta^+ \rightarrow \pi^+ + n$, if μ damped, no antineutrinos are produced
- *pp* produces equal amount of neutrinos and antineutrinos $p + p \rightarrow n_{\pi} [\pi^0 + \pi^+ + \pi^-]$, which holds even if μ damped
- *pp* is indistinguishable from $p\gamma$ if only $\nu + \bar{\nu}$ is analyzed

Event-wise Glashow Resonance Identification

- GR cascade (W hadronic decay, *e*, *τ* leptonic decay) indistinguishable from NC DIS. However, NC cascades are less energetic
- GR track without cascade at interaction vertex distinguishable from ν_{μ} CC
- ► $2\% \leq f_{\bar{\nu}_e} \leq 72\%$ with 4.6 years of PEPE, $f_{\bar{\nu}_e} \leq 51\%$ with 7.5 years of HESE, assuming hard spectrum
- pp separated from $p\gamma$ at more than 2 σ significance regardless of flux assumption

See also 2303.13706

All future ν telescopes

Liu, NS, Vincent, PRD/2304.06068

Statistical Analysis of GR

Assuming event-wise identification not possible, consider only contained events

Analysis	Spectrum	pp from $p\gamma$	$p\gamma$ from pp	pp from $p\gamma$	$p\gamma$ from pp	
111019515		π decay	π decay	$\mu { m damped}$	μ damped	LIU, N
HESE event-wise	soft	1.6σ	1.4σ	$> 5\sigma$	0.7σ	
	hard	3.8σ	3.3σ	$> 5\sigma$	6.0σ	
PEPE event-wise	soft	2.3σ	2.0σ	$> 5\sigma$	1.4σ	
	hard	5.3σ	4.7σ	$> 5\sigma$	6.9σ	
HESE Bayesian	soft	2.6σ	2.1σ	3.5σ	3.1σ	
	hard	4.4σ	3.9σ	6.3σ	6.5σ	

