劉佳韋

Liaoning

Nov. 3, 2024

Parity and Bell tests

Collaborators: 杜勇, 何小刚, 马建平

第三届高能物理理论与 实验融合发展研讨会

arXiv:2409.15418

• Research background

In **1956**, *parity tests* were proposed by Lee and Yang.

s \overline{a}

$$
{}_{27}^{60}Co \rightarrow {}_{28}^{60}Ni + e^- + \bar{\nu}_e + 2\gamma
$$

Tested in the same year by *Chien-Shiung Wu*:

Λ

 $k_{p}^{}$

In **1935**, *entanglements* (spooky interactions) were discussed by Einstein, Podolsky and Rosen.

 $\langle \hat{s}_{\Lambda} \cdot \hat{k}_{p} \rangle \stackrel{P}{\rightarrow} - \langle \hat{s}_{\Lambda} \cdot \hat{k}_{p} \rangle$

It is now an essential cornerstone of the *standard model* ! In **1964**, Bell test was proposed to rule out local variable theories. In **1970**, the first *Bell test* by Kasday, Ullman and *Chien-Shiung Wu*. $e^+e^- \rightarrow 2\gamma$, no *violations of Bell inequality* was *found.* In **1972**, the first violation was observed by Freedman and Clauser. *Excited state of calcium to two photons.*

It is now an essential prediction in *quantum theories* !

 $\Lambda \rightarrow p\pi^-$

̂

̂

-
-

̂

̂

-
-

• Research background

Entanglements of two fermions produced by weak interactions

$i \rightarrow f_1 \overline{f_2}$ with the initial states spin-0 or spin-1

Examples: $B^0 \to \Lambda_c^+ \overline{\Xi}_c^-, Z \to f\bar{f} \cdots$ **Remarks on measurements Magnetic field in detectors; fictitious states**

-
-

• Formalism

What is an entangled state?

$$
\mathscr{C} = \left| \langle \psi | \tilde{\psi} \rangle \right|.
$$

$$
\left| \begin{array}{c} | \psi \rangle \xrightarrow{TR} | \tilde{\psi} \rangle \\ | \uparrow \rangle_{\hat{n}} \xrightarrow{TR} | \downarrow \rangle_{\hat{n}} \end{array}
$$

$$
\left| \begin{array}{c} \frac{1}{\psi} \rangle_{\hat{n}} \xrightarrow{TR} | \downarrow \rangle_{\hat{n}} \\ | \frac{1}{2} \langle \psi | \tilde{\psi} \rangle_{D} | = 0, \quad \left| \frac{1}{2} \langle \psi | \tilde{\psi} \rangle_{B} | = 1. \end{array} \right|
$$

$+ B_1 |$ ↓

 \longrightarrow $| \downarrow \rangle_{\hat{n}}$

How to quantify it? Concurrence:

$$
|\psi\rangle_D = (A_0 | \uparrow \rangle + A_1 | \downarrow \rangle) \otimes (B_0 | \uparrow \rangle
$$

= $| \uparrow \rangle_{\hat{n}_A} \otimes | \uparrow \rangle_{\hat{n}_B}$

$$
|\psi\rangle_B = \frac{1}{\sqrt{2}} (|\uparrow \downarrow \rangle - |\downarrow \uparrow \rangle)
$$

It is **not** a disentangled state $|\psi_D$.

CHSH inequality (a type of Bell inequality) $\mathscr{B} = \left| \left\langle X_A X_B \right\rangle + \left\langle X_A Y_B \right\rangle + \left\langle Y_A X_B \right\rangle - \left\langle Y_B Y_B \right\rangle \right|$ $X_{A,B}$ and $Y_{A,B}$ take the values of ± 1 . *If* the measurements of Alice and Bob were independent, $\langle AB \rangle = \langle A \rangle \langle B \rangle$: \mathbf{L}

$$
\mathscr{B} = \left| \langle X_A + Y_A \rangle \langle X_B \rangle + \langle X_A - Y_A \rangle \langle Y_B \rangle \right| :
$$

• Formalism

Local Realism

-
- $≤ 2.$ Either $\langle X_A + Y_A \rangle$ or $\langle X_A Y_A \rangle$ vanishes.

• Formalism

$$
\rho = \sum_{n} P_n |\psi_n\rangle\langle\psi_n| = \frac{1}{4} \Big(1 + \overrightarrow{B}^+ \cdot \overrightarrow{s}_1 + \overrightarrow{B}^- \cdot \overrightarrow{s}_2 + \overrightarrow{s}_1 \cdot \overrightarrow{C} \cdot \overrightarrow{s}_2 \Big).
$$

 \overrightarrow{B}^{\pm} are the **polarizations** of fermions, and \overleftrightarrow{C} their **correlation**. ⃗

What we obtained in the experiments are **mix states**:

max
$$
(\mathcal{B}(\rho)) = 2\sqrt{\mu_1^2 + \mu_2^2} \le 2\sqrt{2}
$$
, where $\mu_{1,2}$ are eigenvalues of \overleftrightarrow{C} .

$$
\mathcal{C}(\rho) = \max\left(0, 2\lambda_{\text{max}} - \text{Tr}(\mathcal{R})\right), \text{ where } \lambda_{\text{max}} \text{ is the large}
$$

$$
\mathcal{R} = \sqrt{\sqrt{\rho}\tilde{\rho}\sqrt{\rho}} \text{ . Note } \rho \xrightarrow{TR} \tilde{\rho} = (\sigma_y \otimes \sigma_y)\rho^*(\sigma_y \otimes \sigma_y).
$$

d
$$
\overleftrightarrow{C}
$$
 their correlation.

est eigenvalue of

- 1. The *α* quantifies the size of **parity violation**.
- 2. In extreme case, $\mathscr C$ and $\mathscr B$ overlap with **classical** (local realistic) boundaries.
- 3. They are **independent** of other Lee-Yang parameters: *β* = 2Im(*S***P*) $|S|^2 + |P|$ $\frac{1}{2}$, $\gamma =$ $|S|^2 - |P|^2$ $|S|^2 + |P|$ $\overline{2}$.

• Formalism— spin-0 to two fermions $(h_i \rightarrow f_1 \bar{f}_2)$

$$
M_{\text{scalar}} = \bar{f}_1 \left(g_S - g_P \gamma_5 \right) f_2, \quad S = g_S \sqrt{m_i^2}
$$

$$
\alpha = \frac{2 \text{Re}(S^* P)}{|S|^2 + |P|^2}, \qquad P = g_P \sqrt{m_i^2}
$$

• Formalism— spin-1 to two fermions

• Formalism— spin-1 to two fermions

Entanglements of two fermions produced by weak interactions

$i \rightarrow f_1 \overline{f_2}$ with the initial states spin-0 or spin-1

Examples: $B^0 \to \Lambda_c^+ \overline{\Xi}_c^-, Z \to f\bar{f} \cdots$ **Remarks on measurements Magnetic field in detectors; fictitious states**

$$
\epsilon = 1 - b_{1k}^2 - c_2^2 - (1 + c_5)^2 \ge 0.
$$

Note that $(b_{1k}, c_2, c_5) = (\alpha, \beta, -1 - \gamma)$ and $\epsilon = 0$ in QFT. $\left.\begin{matrix} \mathfrak{S} & 0.5 \end{matrix}\right|$

Purity tests can also be done in hyperons decays, $\chi^0_c \rightarrow \Lambda \Lambda$ *.*

Precision can hit 10^{-3} *at* $\sqrt{25}$ $\frac{1}{2}$ / $\epsilon(\Lambda \to p\pi^{-}) = -0.025 \pm 0.154$ in 1962

• Measurements in spin-0 to two fermions $(h_i \rightarrow f_1 \bar{f}_2)$

$$
\rho = \frac{1}{4} \Big(1 + b_{1k} \hat{k} \cdot \vec{s}_1 - b_{1k} \hat{k} \cdot \vec{s}_2 + \vec{s}_1 \cdot \vec{C} \cdot \vec{s}_2 \Big).
$$

\n
$$
C_{ij} = (-1 - 2c_5/3)\delta_{ij} + c_2 \epsilon_{ijl} \hat{k}_l + c_5 (\hat{k}_i \hat{k}_j - \delta_{ij})
$$

\n**Angular momentum conservation:** $\rho(\vec{s}_1 = \vec{s}_2 = \pm$

One-to-one correspondence of $\mathscr C$ and $\mathscr B$ is broken by ϵ .

Zhou, Zou and Li, **arXiv**:2409.16113

Angular momentum conservation: $\rho(\vec{s}_1 = \vec{s}_2 = \pm \hat{k}) = 0.$ **Solution** ⃗

Uncertainties from *B* and \mathbf{B}_c LCDAs, the scale dependence, and the Sudakov resummation, in pQCD

• Measurements in spin-0 to two fermions $(h_i \rightarrow f_1 \bar{f}_2)$

$$
\rho = \frac{1}{4} \left(1 + b_{1k} \hat{k} \cdot \vec{s}_1 - b_{1k} \hat{k} \cdot \vec{s}_2 + \vec{s}_1 \cdot \vec{C} \cdot \vec{s}_2 \right).
$$

$$
C_{ij} = (-1 - 2c_5/3)\delta_{ij} + c_2 \epsilon_{ijl} \hat{k}_l + c_5 (\hat{k}_i \hat{k}_j - \delta_{ij}
$$

• Measurements in spin-1 to two fermions $(Z \rightarrow ff)$

Fictitious states come from the needs of accumulating enough data over θ :

$$
\bar{\rho} = \frac{1}{\mathcal{N}} \int_{\theta_1}^{\theta_2} \rho(\theta) \frac{d\sigma(\theta)}{d\cos\theta} d\cos\theta.
$$

 σ is the scattering rate.

It induces **basis-dependence**. For example, using (x, y, z) would \mathbf{d} **iffer** from (r, θ, ϕ) .

$$
\bar{\rho}' = \frac{1}{\mathcal{N}} \int_{\theta_1}^{\theta_2} U_1(\theta) \rho(\theta) U_2^{\dagger}(\theta) \frac{d\sigma(\theta)}{d\cos\theta} d\cos\theta.
$$

Here $U_{1,2}(\theta)$ are $SU(2)$ \otimes $SU(2)$ rotations.

$$
\bar{\rho}' = \frac{1}{\mathcal{N}} \int_{\cos \theta_1}^{\cos \theta_2} U_1(\theta) \rho(\theta) U_2^{\dagger}(\theta) \frac{d\sigma(\theta)}{d\cos \theta} d\theta
$$

to **maximize** $\mathscr{B}(\overline{\rho}')$?

A: $C'(\theta)$ *in* $\rho'(\theta) = U_1(\theta) \rho(\theta) U_2^{\dagger}(\theta)$ *is diagonal and* $\hat{C}'(\theta)$ in $\rho'(\theta) = U_1(\theta)\rho(\theta)U_2^{\dagger}(\theta)$

$$
\mathscr{B}(\overline{\rho}') = \frac{2}{\mathscr{N}} \sqrt{\sum_{i=1,2} \left[\int_{\theta_1}^{\theta_2} \mu_i \left(\frac{d\sigma}{d\cos\theta} \right) d\,\text{cc}}
$$

Here $\mu_{1,2}$ are the eigenvalues of $C'(\theta)$. **arXiv**:2407.01672, 2409.15418.

• Measurements in spin-1 to two fermions $(Z \rightarrow ff)$

$$
\rho = \frac{1}{4} \left(1 + \overrightarrow{B}^+ \cdot \overrightarrow{s}_1 + \overrightarrow{B}^- \cdot \overrightarrow{s}_2 + \overrightarrow{s}_1 \cdot \overleftrightarrow{C} \cdot \overrightarrow{s}_2 \right)
$$

 ${\bf Q:}$ How to choose $U_{1,2}(\theta)$

• Measurements in spin-1 to two fermions

The upper and lower scripts represent $\cos \theta_2$ and

• Heavy quark symmetry has been used in Λ_{Q} .

It relates the heavy quark spins to Λ_Q .

- The parity violation on the production side has $\boldsymbol{\epsilon}$ considered. Causing asymmetries between θ and $\pi - \theta$.
- $| \alpha_f |$ denotes the sizes of parity violation. A larger $| \alpha_f |$ implies a lower violation of Bell inequality.

$$
u \cos \theta_1 : \bar{p}' = \frac{1}{\pi} \int_{\cos \theta_1}^{\cos \theta_2} U_1(\theta) \rho(\theta) U_2^{\dagger}(\theta) \frac{d\sigma(\theta)}{d\cos \theta} d\cos \theta.
$$

\n
$$
\frac{0.1}{0.1} \frac{\overline{B}^{0.3}_{0.1} \overline{B}^{0.5}_{0.1} \overline{B}^{1.0}_{0.2}}{2.10} = 2.06 = 2.01
$$

\n
$$
10 = 2.10 = 2.06 = 2.01
$$

\n
$$
11 = 2.47 = 2.07
$$

\n
$$
13 = 2.71 = 2.47 = 2.07
$$

\n
$$
14 = 2.71 = 2.47 = 2.07
$$

\n
$$
\overline{f}
$$

\n
$$
e
$$

\n<

• **Magnetic fields in general**
\n
$$
\rho = \frac{1}{4} \left(1 + \overrightarrow{B}^+ \cdot \overrightarrow{s}_1 + \overrightarrow{B}^- \cdot \overrightarrow{s}_2 + \overrightarrow{s}_1 \cdot \overrightarrow{B} \right)
$$

- Impact of magnetic fields on CHSH parameters are around 10^{-3} .
- $\Delta C_{12} = C_{12} C_{21} \neq 0$ indicates **CP violation** in the absence of magnetic fields.
	- $\alpha_{\overline{E}-} = -0.376 \pm 0.007 \pm 0.003$ $\alpha_{\overline{E}+} = 0.371 \pm 0.007 \pm 0.002$ Nature **606**, 64-69 (2022)
- Precisions in $\frac{S}{H}$ are around 10^{-4} .

吴健雄 (*1912—1997***)** 物理学第一夫人

Parity Tests ? Bell Tests

-
- **A:** Not so useful to the NP model defined in QFT, with the feature:
	-
	-
	- *violates* Lorentz (CPT) symmetry and *cannot* defined

Q: Are Bell tests useful in searching for new physics? CP violation, flavor changing, e.t.c.. Useful to nonstandard NP model that within QFT…

We can so we should conduct Bell tests!

BR($Z \rightarrow \tau^+\tau^-$) = (3.33696 ± 0.0066) % CEPC ∼ 7 × 10¹¹ $FCC - ee \sim 3 \times 10^{12}$

BR($Z \to \Lambda_c^+ X$) = (1.54 ± 0.33) %

BR($Z \to b$ baryon*X*) = (1.38 ± 0.22) %

• Loopholes?

• It requires the observables to be non-commutative, which are not satisfied in the collider particle pairs.

Testing locality at colliders via Bell's inequality?

S.A. Abel^a, M. Dittmar^b and H. Dreiner^a

- ^a Department of Physics, University of Oxford, 1 Keble Road, Oxford OX1 3NP, UK
- ^b Department of Physics, University of California, Riverside, CA 92521, USA

Received 5 December 1991; revised manuscript received 6 January 1992

We consider a measurement of correlated spins at LEP and show that it does not constitute a general test of local-realistic theories via Bell's inequality. The central point of the argument is that such tests, where the spins of two particles are inferred from a scattering distribution, can be described by a local hidden variable theory. We conclude that with present experimental techniques it is not possible to test locality via Bell's inequality at a collider experiment. Finally we suggest an improved fixedtarget experiment as a viable test of Bell's inequality.

f

 \int_{1}^{2}

̂

$$
\epsilon = 1 - b_{1k}^2 - c_2^2 - (1 + c_5)^2 \ge 0.
$$

Note that $(b_{1k}, c_2, c_5) = (\alpha, \beta, -1 - \gamma)$ and $\epsilon = 0$ in QFT. $\overline{\mathcal{S}}$ 0.5

• Measurements in spin-0 to two fermions $(h_i \rightarrow f_1 \bar{f}_2)$

$$
\rho = \frac{1}{4} \left(1 + b_{1k} \hat{k} \cdot \vec{s}_1 - b_{1k} \hat{k} \cdot \vec{s}_2 + \vec{s}_1 \cdot \vec{C} \cdot \vec{s}_2 \right).
$$

\n
$$
C_{ij} = (-1 - 2c_5/3)\delta_{ij} + c_2 \epsilon_{ijl} \hat{k}_l + c_5 (\hat{k}_i \hat{k}_j - \delta_{ij})
$$

One-to-one correspondence of $\mathscr C$ and $\mathscr B$ is broken by ϵ . Angular momentum conservation: $\rho(\vec{s}_1 = \vec{s}_2 = \pm \hat{k}) = 0.$ **Solution**

 $\boldsymbol{0}$

2.2

2.4

 $\mathcal{B}(\rho)$

2.6

$$
\mathcal{B} = 2\sqrt{2 - b_{1k}^2 - \epsilon},
$$

$$
\mathcal{C}(\rho) = \frac{1}{2} [(\mathcal{B}(\rho)^2 - 4)(\mathcal{B}(\rho)^2 - 4 + 4\epsilon)]^{\frac{1}{4}}.
$$

• Formalism— spin-1 to two fermions

 $M_{\text{vector}} = g_f \epsilon_\mu \bar{u} \gamma^\mu (\cos \varphi + \sin \varphi \gamma_5) v \,, \,$ where g_f is some constant.

2. $\sin^2\varphi=0.5$: maximal parity violations and the states **disentangle**.

3. $\mathscr C$ and $\mathscr B$ reach **maximums** at $\theta = \pi/2$, and are invariant under $\theta \rightarrow \pi - \theta$.

1. *θ* is defined as :

f

