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generate a cascade of emissions. 

simulate the rich structure of the events or the jets

HTL, Yan, Yuan, PRL, 2023
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Parton Showers: 

Monte Carlo Event generator 

play a key role in the 
resummation of soft and collinear 
emissions

help to simulate the 
hadronization process

help in modeling jet production in 
hadronic collisions

provide insights into the 
dynamics of QCD
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The purpose of Monte Carlo event generators is to generate events in as much 
details as nature (generate average and fluctuation right) 

Hard process in high energy 

Transition from high energy to 
low energy 
—parton shower 

Low energy soft regime 
—fragmentation  

hard scale

hadronization 

stable particles

Fragmentation

Parton shower

Parton shower: a model for the evolution from high scale to hadronization scale 

𝒫event = 𝒫Hard ⊗ 𝒫Decay ⊗ 𝒫ISR ⊗ 𝒫FSR ⊗ 𝒫MPI ⊗ 𝒫Had⋯

Monte Carlo Event generator 
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In the collinear or soft limit, the matrix element can be factorized as

Parton Shower

|M(⋯, pi, pj, ⋯) |2 i||j g2
s 𝒞

P(z)
sij

|M(⋯, pi + pj, ⋯) |2

|M(⋯, pi, q, pj, ⋯) |2 q→0 g2
s 𝒞

pi ⋅ pj

pi ⋅ q pj ⋅ q
|M(⋯, pi, pj, ⋯) |2

n+1 external legs n external legs 
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pi ⋅ q pj ⋅ q
|M(⋯, pi, pj, ⋯) |2

n+1 external legs n external legs 

Together with phase space integration, the cross section is 

dσn+1 =
1
2s ∫ dϕn+1 |Mn+1 |2 = dσn ⊗ dϕn→n+1 ×

|Mn+1 |2

|Mn |2

If we want to get the single unresolved limit correct,   can be written as universal functions.
|Mn+1 |2

|Mn |2

higher multiplicities can be obtained recursively 
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dσn+1 =
1
2s ∫ dϕn+1 |Mn+1 |2 = dσn ⊗ dϕn→n+1 ×

|Mn+1 |2

|Mn |2

In the exact single-unresolved limit


 or sij = 0 Eq = 0

Non-branching effects
Parton Shower
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dσn+m =
1
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1
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dσn+1 =
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2s ∫ dϕn+1 |Mn+1 |2 = dσn ⊗ dϕn→n+1 ×

|Mn+1 |2
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In the exact single-unresolved limit


 or sij = 0 Eq = 0

dσn+m =
1
2s ∫ dϕn+1 |Mn+1 |2 = dσn ×

1
m! (∫ dϕn→n+1

|Mn+1 |2

|Mn |2 )
m

dσn+2 =
1
2s ∫ dϕn+1 |Mn+1 |2 = dσn ×

1
2 (∫ dϕn→n+1 ×

|Mn+1 |2

|Mn |2 )
2

dσn × exp [∫ dϕn→n+1
|Mn+1 |2

|Mn |2 ]
take m → ∞

no additional radiation observed with the probability function  Δ = exp [∫ dϕn→n+1
|Mn+1 |2

|Mn |2 ]

Non-branching effects

add together from  to m = 0 m = ∞

Parton Shower
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Monte-Carlo Technique and resummation 

Phase space mapping  ∫ dϕn→n+1
|Mn+1 |2

|Mn |2 = ∫
Q2

q2

dk2

k2

αs

2π ∫
1−Q2

0 /k2

Q2
0 /k2

dzPji(z)
many choices for the evolution variables 

dθ2

θ2
=

dq2

q2
=

dk2
⊥

k2
⊥

50000 points

new phase space point generated  
according to the new scales

d
dq2

Δ (Q2, q2) = Δ (Q2, q2) × dϕn→n+1
|Mn+1 |2

|Mn |2

 distribution generated byQ2/Q1

Analytical

MC Simulations
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Parton Shower
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start from Sudakov form factor: Non-branching probability 

for example 


use Monte Carlo Method to generate kinematics variables  such as , ,  


use these variables to construct 


repeat the above algorithm recursively  

Δ(Q2, q2) = exp [∫
q2

Q2

dϕn→n+1
|Mn+1 |2

|Mn |2 ]
k⊥ z ϕ

ϕn → ϕn+1

Parton Shower
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Infrared structure for single unresolved limit is well known

antenna function obtained directly from 
matrix element square 

applied widely used CS dipole subtraction terms 

DGLAP splitting functions used 

many choices for the evolution variables 

dθ2

θ2
=

dq2

q2
=

dk2
⊥

k2
⊥Phase space mapping  ∫ dϕn→n+1

|Mn+1 |2

|Mn |2 = ∫
Q2

q2

dk2

k2

αs

2π ∫
1−Q2

0 /k2

Q2
0 /k2

dzPji(z)

Parton Shower
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From parton shower

σPS
NLO = σ0Πi (Δi(Q2, Q2

0) + ∫
Q2

Q2
0

dq2

q2
Δi(Q2, q2)∫ dzPji(z))

LO parton shower

0-radiation 1-radiation (Sudakov suppressed)

1 − Δi(Q2, Q2
0)

Parton Shower
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Q2
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Δi(Q2, q2)∫ dzPji(z))

LO parton shower

0-radiation 1-radiation (Sudakov suppressed)

𝒫(unresolved) + 𝒫(resolved) = 1

From the definition of Sudakov factor, we have

probability conservation from the definition of Δ

1 − Δi(Q2, Q2
0) subtracted real

σNLO = σ0 + (∫ dΦnV + ∫ dΦn+1S) 𝒪n + ∫ dΦn+1(R𝒪n+1 − S𝒪n)

virtual integrated 
subtraction 

LO parton showers reproduce the NLO singular behavior 
of the underlying hard process with unitarity assumption 

.V + ∫ R = 0

From NLO calculations

σNLO = σn
0 + ∫

tn

0
dσn

(1) + ∫tn

dσn+1
(1)

  as the resolution scale for 1-radiationtn

Parton Shower
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NNLO QCD corrections with subtraction method

δσNNLO = (∫ dΦnV2 + ∫ dΦn+2S(1)
n+2 + ∫ dΦn+2Sn+2) 𝒪n

double virtual

+ (∫ dΦn+1VR𝒪n+1 − ∫ dΦn+1S(1)
n 𝒪n + ∫ dΦn+2Sn+1𝒪n+1)

real virtual(single unresolved and resolved)

+ ∫ dΦn+2(R𝒪n+2 − Sn+1𝒪n+1 − Sn+2𝒪n)

double real (double/single unresolved,and double resolved)

Parton Shower
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NNLO QCD corrections with subtraction method

δσNNLO = (∫ dΦnV2 + ∫ dΦn+2S(1)
n+2 + ∫ dΦn+2Sn+2) 𝒪n

double virtual

+ (∫ dΦn+1VR𝒪n+1 − ∫ dΦn+1S(1)
n 𝒪n + ∫ dΦn+2Sn+1𝒪n+1)

real virtual(single unresolved and resolved)

+ ∫ dΦn+2(R𝒪n+2 − Sn+1𝒪n+1 − Sn+2𝒪n)

double real (double/single unresolved,and double resolved)
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t0

0
dσn

(2) + ∫
tn+1

tn

dσn+1
(2) + ∫tn+1

dσn+2
(2)

In kinematics, there are , , and  particle final state n + 2 n + 1 n

expected to have a similar structure as NNLO does

expected to resummed the singular terms in NNLO corrections

How to defined a NLO parton shower?

Parton Shower
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𝒫(unresolved) + 𝒫(resolved) = 1

we want to get  correctly ∫
tn+1

tn

dσn+1
(2) + ∫tn+1

dσn+2
(2)

δσNNLO = ∫
t0

0
dσn

(2) + ∫
tn+1

tn

dσn+1
(2) + ∫tn+1

dσn+2
(2)

In kinematics, there are , , and  particle final state n + 2 n + 1 n

Parton Shower

Parton shower algorithm requires 

 is obtained from unitarity ∫
t0

0
dσn

(2)σPS
NLO = σ0Πi (Δi(Q2, Q2

0) + ∫
Q2

Q2
0

dq2

q2
Δi(Q2, q2)∫ dzPji(z))

non-radiation with radiation
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d
dQ2 (1 − Δ(Q2

0 , Q2)) = − ∫
dΦ3

dΦ2
δ(Q2 − Q2(Φ3)) a0

3Δ(Q2
0 , Q2)

2 to 3 phase space mapping LO antenna function
LO parton shower

Parton Shower
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d
dQ2 (1 − Δ(Q2

0 , Q2)) = − ∫
dΦ3

dΦ2
δ(Q2 − Q2(Φ3)) a0

3Δ(Q2
0 , Q2)

2 to 3 phase space mapping LO antenna function
LO parton shower

Parton Shower

NLO parton shower
d

dQ2 (1 − Δ (Q2
0 , Q2))

branching probability 

= − ∫
dΦ3

dΦ2
δ (Q2 − Q2 (Φ3)) (a0

3 + a1
3)

born and virtual correction 

Δ (Q2
0 , Q2)

− ∫
dΦ4

dΦ2
δ (Q2 − Q2 (Φ4)) a0

4

real correction 

Δ (Q2
0 , Q2)

What we expect for NLO showers
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Parton Shower
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LO matrix 
element NLO corrections 

3 parton final state 3+4 parton final state

Resummation of NLO parton showers

Evolution kernel reproduces the singular of 
the matrix element at NNLO 

Two-loop anomalous dimensions are included correctly at leading color
resummation beyond NLL
NNLL if three loop cusp included

Many efforts in this direction

And also parton showers beyond Leading color,  
 Nagy, Soper, 2019; DeAngels, Forshw, Platzer, 2020; Hamilton etal 2021

 Dulat, Prestel, Hoche, 2018; HTL, Skands, 2017

Parton Shower
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ΔNLO
2 (t0, t) = exp {−∫

t0

t
dΦ+1 A(0)

2↦3 (Φ+1) wNLO
2↦3 (Φ2, Φ+1)} × exp {−∫

t0

t
dΦ>

+2A
(0)
2↦4 (Φ+2) wLO

2↦4 (Φ2, Φ+2)}
Expanding the Sudakov factor to NNLO and compare it with full NNLO corrections First fully differentially matching 

Matching using NLO antenna shower
NLO Matching



/`1717

Summary

Parton showers are built on soft and collinear approximations to the full cross sections


conserve flavor and four momentum, and 


constructed with the assumption unitarity, 


Showers generate singular parts of higher-order matrix elements and evolve events from high 
scale to hadronization scale.


Briefly discussed antenna shower and its NLO corrections


The NLO shower can be matched to NNLO QCD corrections fully differentially

Indispensable tools for particle physics phenomenology at hadron colliders.  
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Parton showers are built on soft and collinear approximations to the full cross sections


conserve flavor and four momentum, and 


constructed with the assumption unitarity, 


Showers generate singular parts of higher-order matrix elements and evolve events from high 
scale to hadronization scale.


Briefly discussed antenna shower and its NLO corrections


The NLO shower can be matched to NNLO QCD corrections fully differentially

Indispensable tools for particle physics phenomenology at hadron colliders.  

Thank you!


