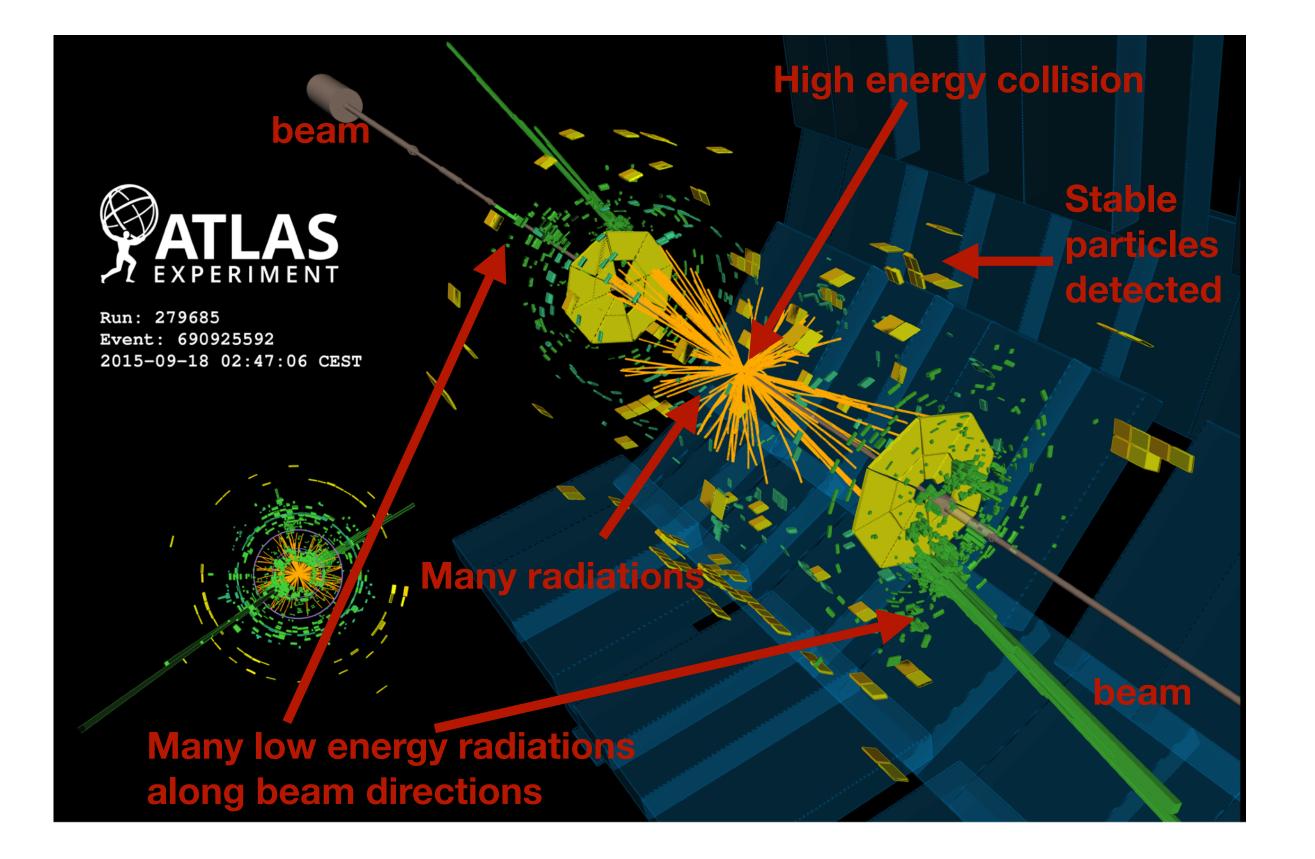
NNLO matching to parton shower with Vincia

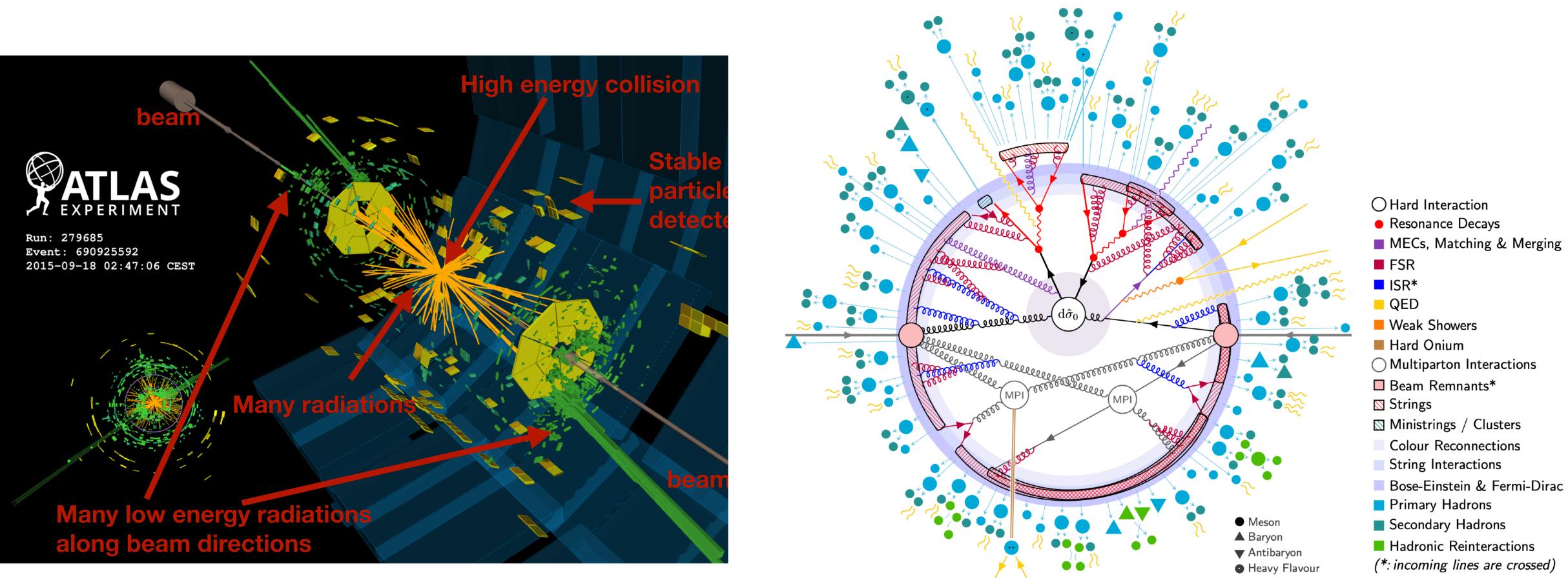
HTL, Skands, PLB 2017 Campbell, Hoche, HTL, Skands, Preuss, PLB 2023 & HTL, Skands, works in preparation

第三届高能物理理论与实验融合发展研讨 辽宁师范大学

2024年11月2日



Monte Carlo Event generator

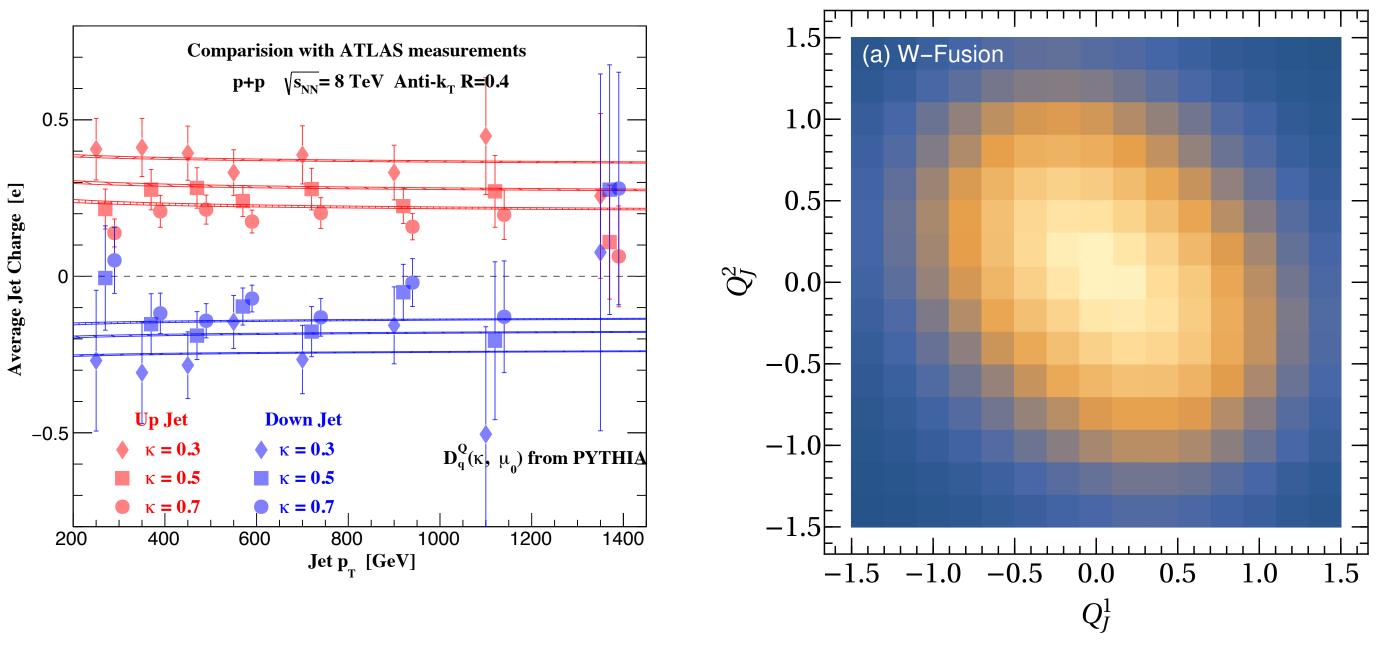


Monte Carlo Event generator

From PYTHIA 8.3

play a key role in the resummation of soft and collinear emissions

- **D** help to simulate the hadronization process
- help in modeling jet production in hadronic collisions
- **D** provide insights into the dynamics of QCD



Monte Carlo Event generator

generate a cascade of emissions. simulate the rich structure of the events or the jets

HTL, Vitev, PRD, 2020; PRL, 2021

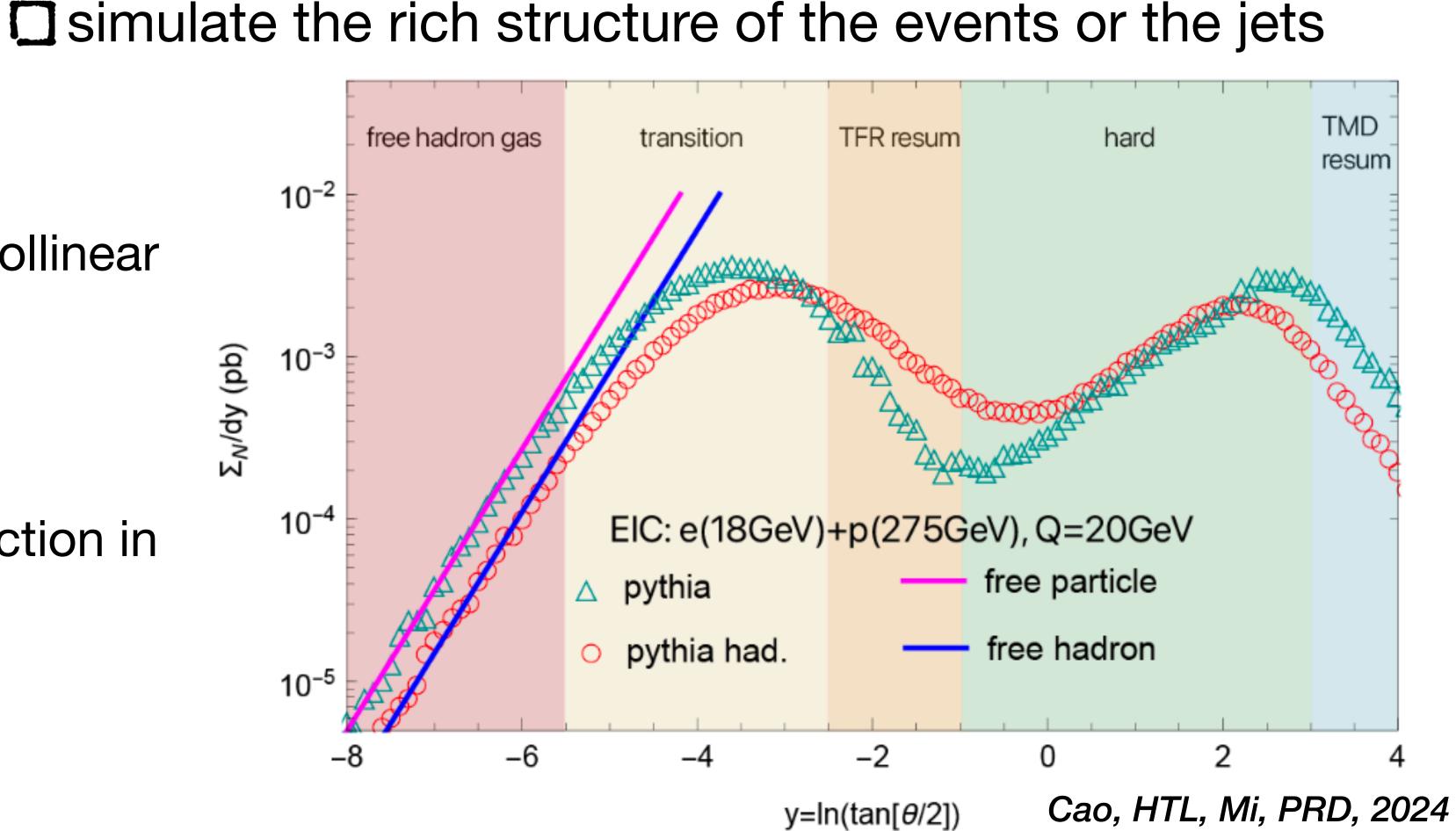
HTL, Yan, Yuan, PRL, 2023

play a key role in the 10^{-2} resummation of soft and collinear emissions Σ_N/dy (pb) 10⁻³ **D** help to simulate the hadronization process 10^{-4} help in modeling jet production in hadronic collisions

D provide insights into the 10dynamics of QCD

Monte Carlo Event generator

Q generate a cascade of emissions.



The purpose of Monte Carlo event generators is to generate events in as much details as nature (generate average and fluctuation right)

Hard process in high energy

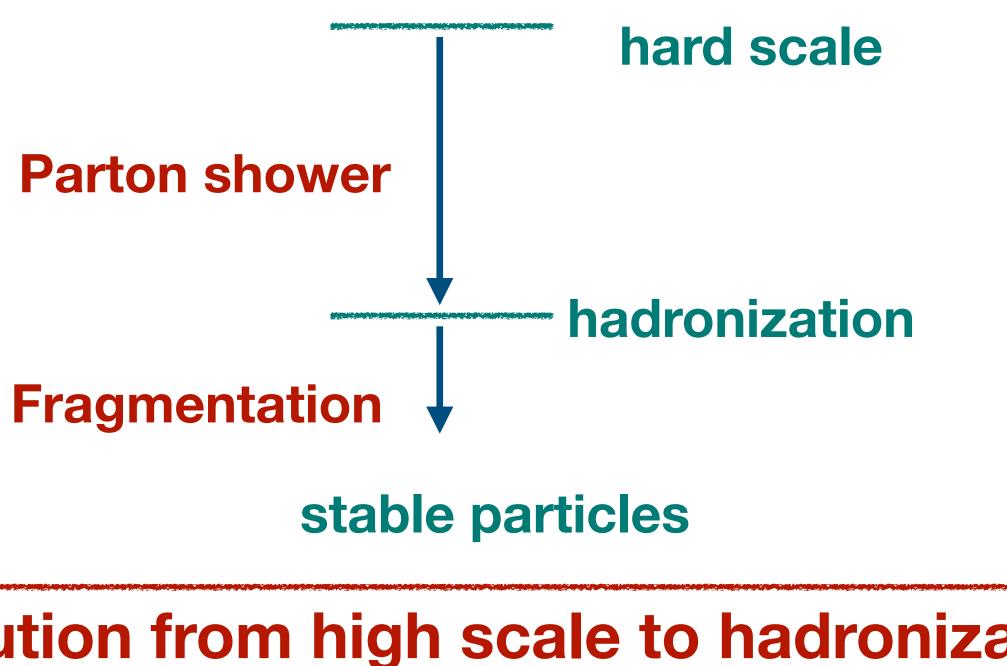
Transition from high energy to low energy –parton shower

Low energy soft regime -fragmentation

Parton shower: a model for the evolution from high scale to hadronization scale

Monte Carlo Event generator

 $\mathscr{P}_{\text{event}} = \mathscr{P}_{\text{Hard}} \otimes \mathscr{P}_{\text{Decay}} \otimes \mathscr{P}_{\text{ISR}} \otimes \mathscr{P}_{\text{FSR}} \otimes \mathscr{P}_{\text{MPI}} \otimes \mathscr{P}_{\text{Had}} \cdots$



In the collinear or soft limit, the matrix element can be factorized as

$$\begin{split} |M(\dots,p_i,p_j,\dots)|^2 & \stackrel{i||j}{\to} g_s^2 \mathscr{C} \frac{P(z)}{s_{ij}} |M(\dots,p_i+p_j,\dots)|^2 \\ |M(\dots,p_i,q,p_j,\dots)|^2 & \stackrel{q\to 0}{\to} g_s^2 \mathscr{C} \frac{p_i \cdot p_j}{p_i \cdot q \ p_j \cdot q} |M(\dots,p_i,p_j,\dots)|^2 \end{split}$$

n+1 external legs

n external legs

In the collinear or soft limit, the matrix element can be factorized as

$$\begin{split} \left| M(\cdots, p_i, p_j, \cdots) \right|^2 & \stackrel{i \parallel j}{\to} g_s^2 \mathscr{C} \frac{P(z)}{s_{ij}} \left| M(\cdots, p_i + p_j, \cdots) \right|^2 \\ \left| M(\cdots, p_i, q, p_j, \cdots) \right|^2 & \stackrel{q \to 0}{\to} g_s^2 \mathscr{C} \frac{p_i \cdot p_j}{p_i \cdot q} \left| M(\cdots, p_i, p_j, \cdots) \right|^2 \end{split}$$

n+1 external legs

Together with phase space integration, the cross section is

$$d\sigma_{n+1} = \frac{1}{2s} \int d\phi_{n+1} |M_{n+1}|^2 = d\sigma_n \otimes d\phi_{n \to n+1} \times \frac{|M_{n+1}|^2}{|M_n|^2}$$

n external legs

In the collinear or soft limit, the matrix element can be factorized as

$$\begin{split} \left| M(\cdots, p_i, p_j, \cdots) \right|^2 & \stackrel{i \parallel j}{\to} g_s^2 \mathscr{C} \frac{P(z)}{s_{ij}} \left| M(\cdots, p_i + p_j, \cdots) \right|^2 \\ \left| M(\cdots, p_i, q, p_j, \cdots) \right|^2 & \stackrel{q \to 0}{\to} g_s^2 \mathscr{C} \frac{p_i \cdot p_j}{p_i \cdot q} \left| M(\cdots, p_i, p_j, \cdots) \right|^2 \end{split}$$

n+1 external legs

Together with phase space integration, the cross section is

$$d\sigma_{n+1} = \frac{1}{2s} \int d\phi_{n+1} |M_{n+1}|^2 = d\sigma_n \otimes d\phi_{n \to n+1} \times \frac{|M_{n+1}|^2}{|M_n|^2}$$

he single unresolved limit correct, $\frac{|M_{n+1}|^2}{|M_n|^2}$ can be written as universal functions.

If we want to get the

higher multiplicities can be obtained recursively

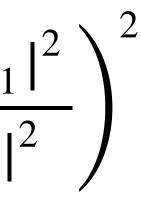
n external legs

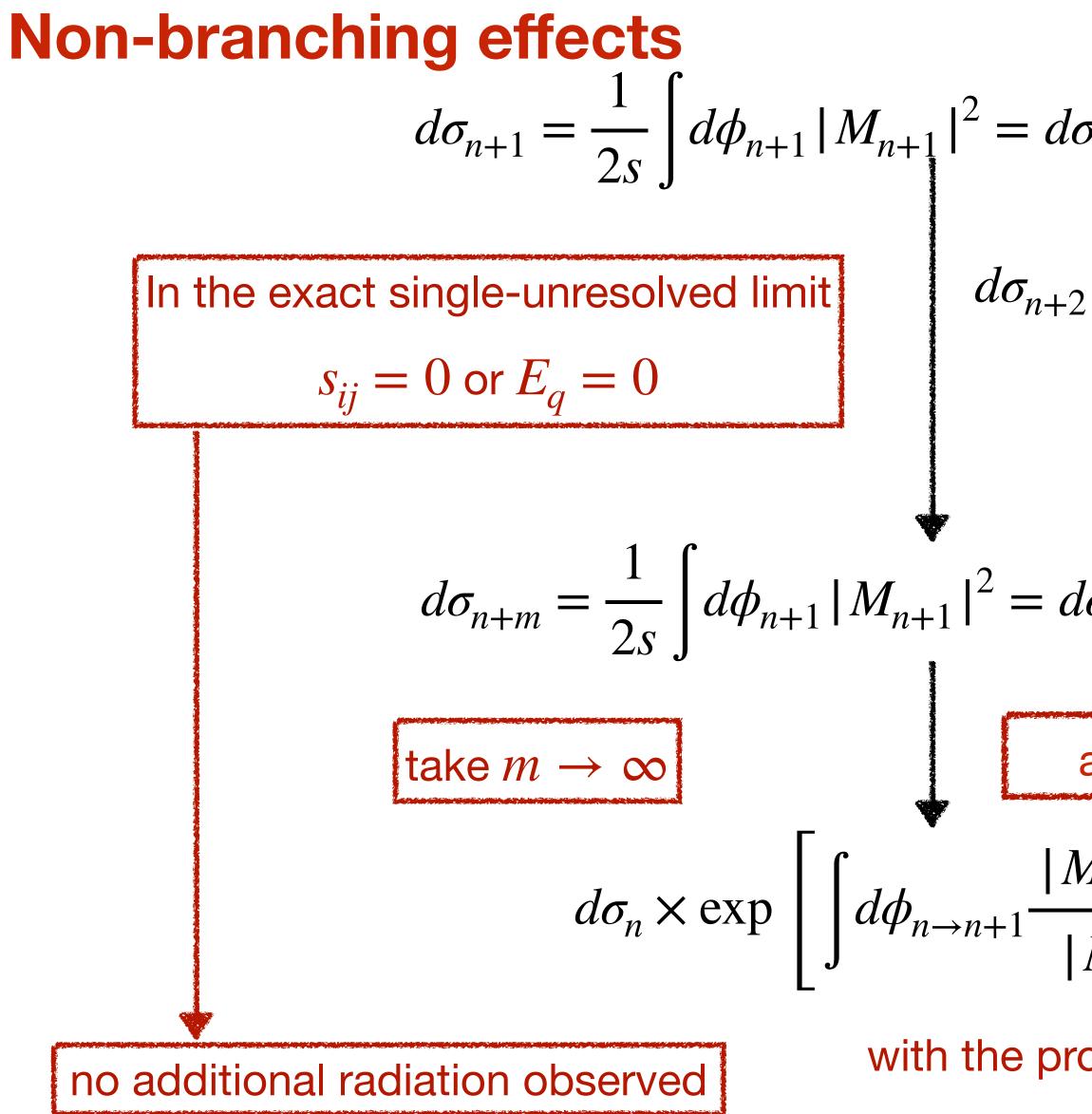
Non-branching effects $d\sigma_{n+1} = \frac{1}{2s} \int d\phi_{n+1} |M_{n+1}|^2 = d\sigma_n \otimes d\phi_{n \to n+1} \times \frac{|M_{n+1}|^2}{|M_n|^2}$

In the exact single-unresolved limit $s_{ij} = 0$ or $E_q = 0$

Non-branching effects $d\sigma_{n+1} = \frac{1}{2s} \int d\phi_{n+1} |M_{n+1}|^2 = d\sigma$ In the exact single-unresolved limit $s_{ij} = 0 \text{ or } E_q = 0$ $d\sigma_{n+m} = \frac{1}{2s} \int d\phi_{n+1} |M_{n+1}|^2 = d\sigma_i$

$$d\sigma_n \times \frac{1}{m!} \left(\int d\phi_{n \to n+1} \frac{|M_{n+1}|^2}{|M_n|^2} \right)^m$$





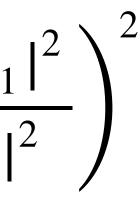
$$d\sigma_n \times \frac{1}{m!} \left(\int d\phi_{n \to n+1} \frac{|M_{n+1}|^2}{|M_n|^2} \right)^m$$

add together from m = 0 to $m = \infty$

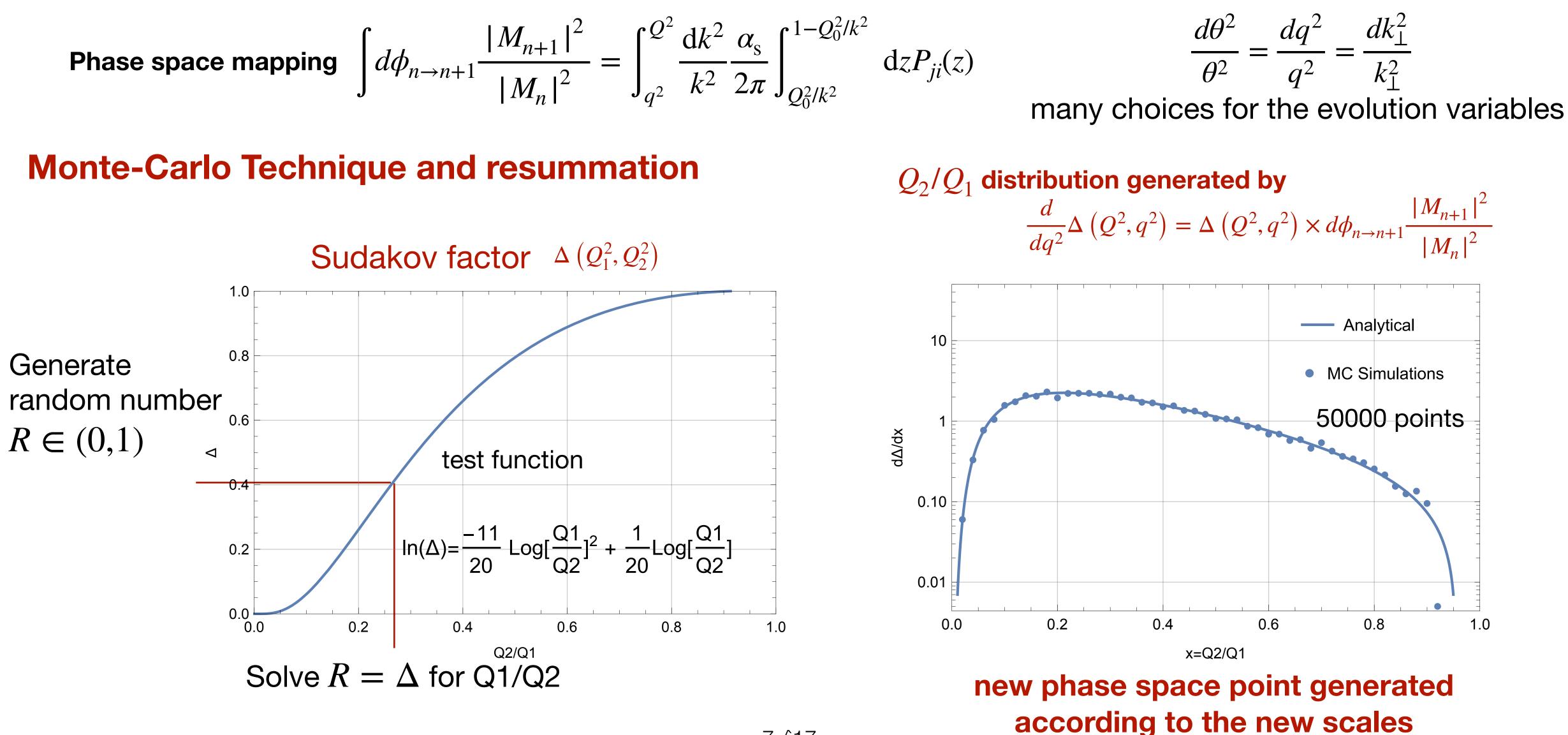
$$\frac{M_{n+1}|^2}{|M_n|^2}$$

with the probability function $\Delta = \exp$

$$\left[\int d\phi_{n\to n+1} \frac{|M_{n+1}|^2}{|M_n|^2}\right]$$



Phase space mapping
$$\int d\phi_{n \to n+1} \frac{|M_{n+1}|^2}{|M_n|^2} = \int_{q^2}^{Q^2} \frac{\mathrm{d}k^2}{k^2}$$



□ start from Sudakov form

for example $\Delta(Q^2, q^2) =$

Q use these variables to co

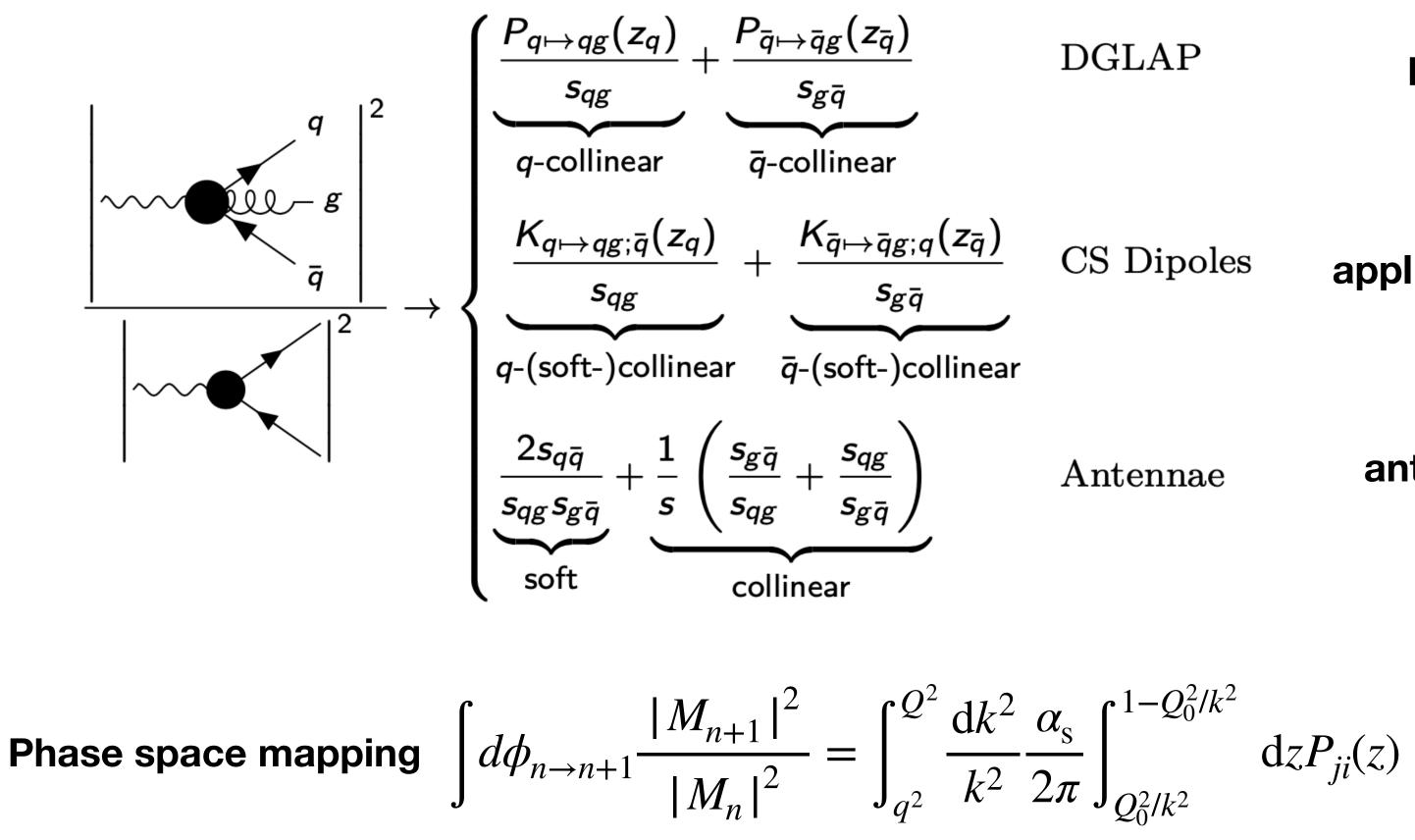
□ repeat the above algorithm recursively

factor: Non-branching probability
= exp
$$\begin{bmatrix} \int_{Q^2}^{q^2} \mathbf{d}\phi_{\mathbf{n}\to\mathbf{n}+1} \frac{|M_{n+1}|^2}{|M_n|^2} \end{bmatrix}$$

 \Box use Monte Carlo Method to generate kinematics variables such as $k_{\perp}, z, \phi_{\perp}$

nstruct
$$\phi_n \to \phi_{n+1}$$

Infrared structure for single unresolved limit is well known



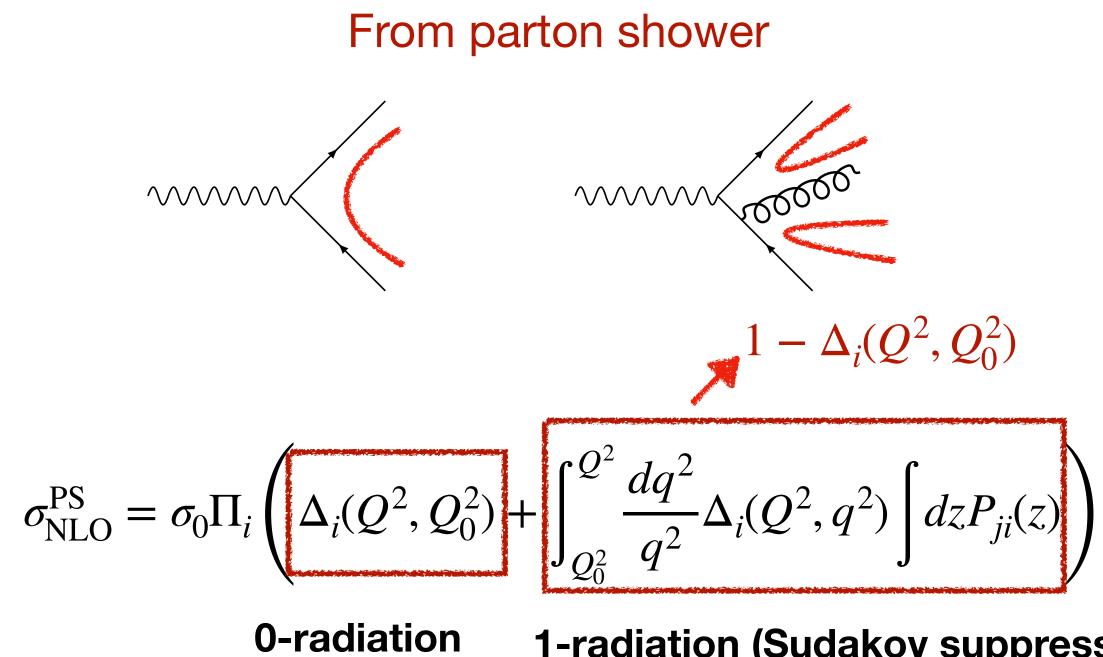
DGLAP **DGLAP** splitting functions used

CS Dipoles applied widely used CS dipole subtraction terms

antenna function obtained directly from Antennae matrix element square

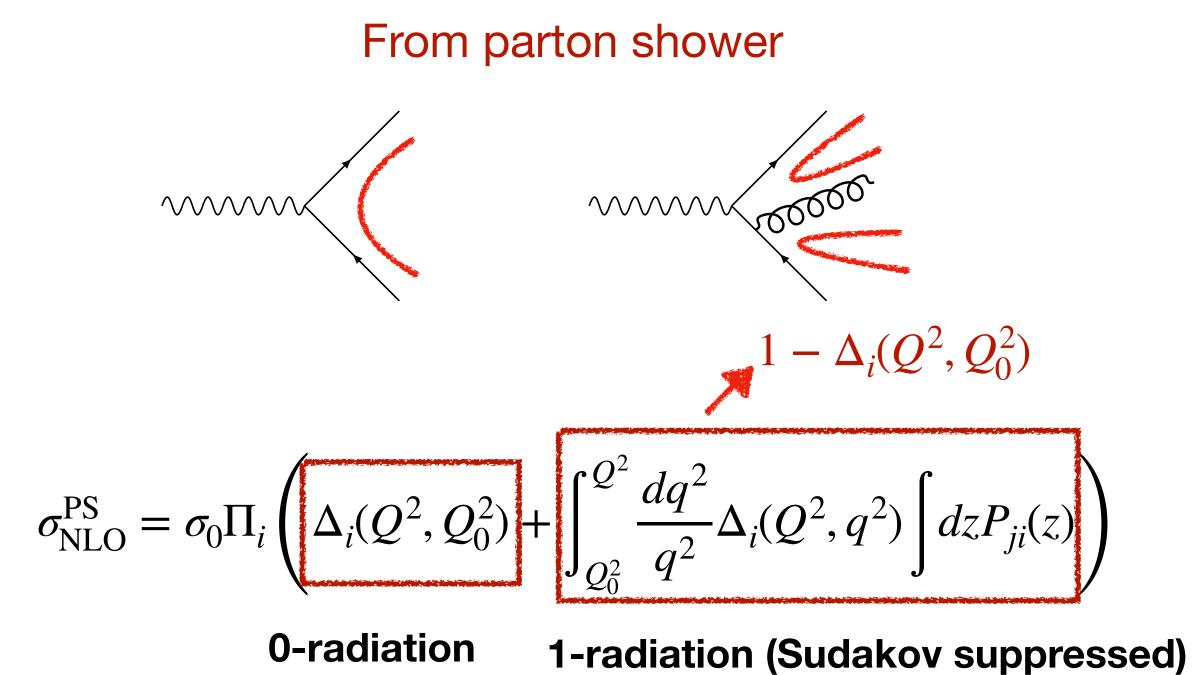
many choices for the evolution variables

LO parton shower



1-radiation (Sudakov suppressed)

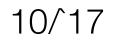
LO parton shower



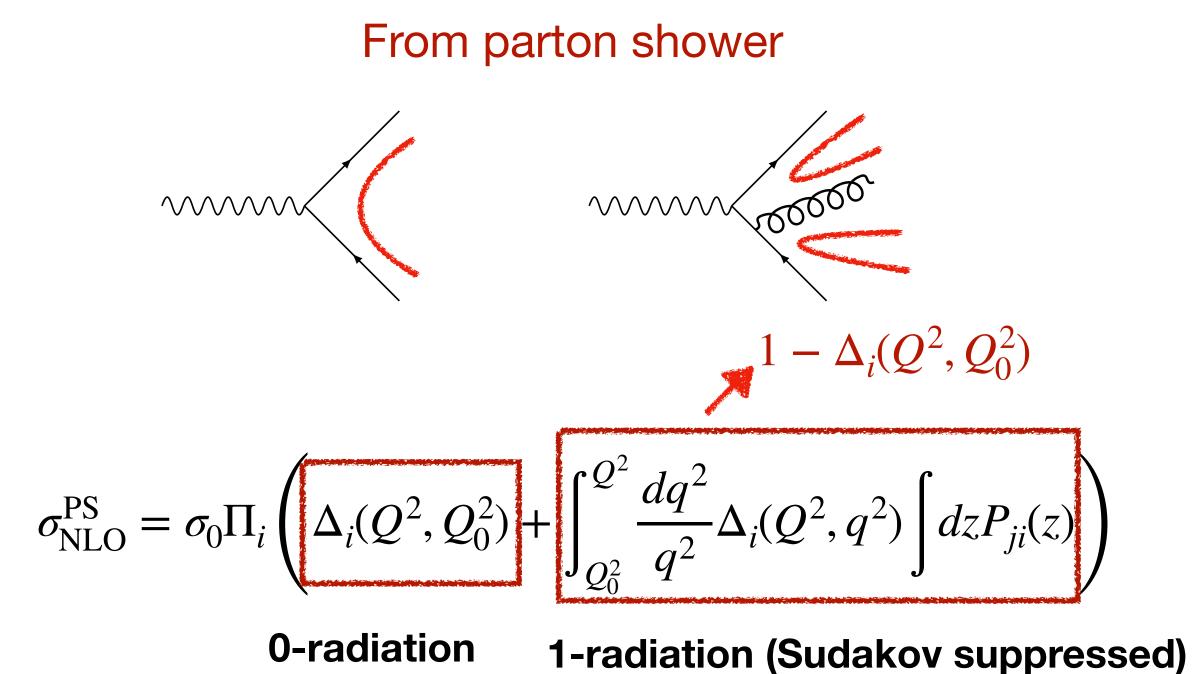
From the definition of Sudakov factor, we have

 $\mathcal{P}(\text{unresolved}) + \mathcal{P}(\text{resolved}) = 1$

probability conservation from the definition of Δ



LO parton shower



From the definition of Sudakov factor, we have

 $\mathscr{P}(\text{unresolved}) + \mathscr{P}(\text{resolved}) = 1$

probability conservation from the definition of Δ

From NLO calculations

$$\sigma_{\rm NLO} = \sigma_0 + \left(\int d\Phi_n V + \int d\Phi_{n+1} S \right) \mathcal{O}_n + \int d\Phi_{n+1} (R \mathcal{O}_{n+1} - I) \mathcal{O}_n + \int d\Phi_{n+1} (R \mathcal{O}_n - I) \mathcal{O}_n + \int d\Phi_{n+1} (R \mathcal{O}_n - I) \mathcal{O}_n + \int d\Phi_{$$

virtual

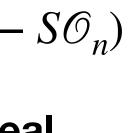
integrated subtraction

subtracted real

$$\sigma_{\rm NLO} = \sigma_0^n + \int_0^{t_n} d\sigma_{(1)}^n + \int_{t_n} d\sigma_{(1)}^{n+1}$$

 t_n as the resolution scale for 1-radiation

LO parton showers reproduce the NLO singular behavior of the underlying hard process with unitarity assumption $V + \mid R = 0.$



NNLO QCD corrections with subtraction method

$$\delta\sigma_{\text{NNLO}} = \underbrace{\left(\int d\Phi_n V_2 + \int d\Phi_{n+2} S_{n+2}^{(1)} + \int d\Phi_{n+2} S_{n+2}\right) \mathcal{O}_n}_{double \ virtual} + \underbrace{\left(\int d\Phi_{n+1} VR \mathcal{O}_{n+1} - \int d\Phi_{n+1} S_n^{(1)} \mathcal{O}_n + \int d\Phi_{n+2} S_{n+1} \mathcal{O}_{n+1}\right)}_{real \ virtual(single \ unresolved \ and \ resolved)} + \int d\Phi_{n+2} (R \mathcal{O}_{n+2} - S_{n+1} \mathcal{O}_{n+1} - S_{n+2} \mathcal{O}_n)$$

double real (double/single unresolved, and double resolved)

NNLO QCD corrections with subtraction method

$$\delta\sigma_{\text{NNLO}} = \underbrace{\left(\int d\Phi_{n}V_{2} + \int d\Phi_{n+2}S_{n+2}^{(1)} + \int d\Phi_{n+2}S_{n+2}\right)\mathcal{O}_{n}}_{double \ virtual} + \underbrace{\left(\int d\Phi_{n+1}VR\mathcal{O}_{n+1} - \int d\Phi_{n+1}S_{n}^{(1)}\mathcal{O}_{n} + \int d\Phi_{n+2}S_{n+1}\mathcal{O}_{n+1}\right)}_{real \ virtual(single \ unresolved \ and \ resolved)} + \int d\Phi_{n+2}(R\mathcal{O}_{n+2} - S_{n+1}\mathcal{O}_{n+1} - S_{n+2}\mathcal{O}_{n})$$

double real (double/single unresolved, and double resolved)

In kinematics, there are n + 2, n + 1, and n particle final state

$$\delta\sigma_{\text{NNLO}} = \int_{0}^{t_0} d\sigma_{(2)}^n + \int_{t_n}^{t_{n+1}} d\sigma_{(2)}^{n+1} + \int_{t_{n+1}} d\sigma_{(2)}^{n+2}$$

NNLO QCD corrections with subtraction method

$$\delta\sigma_{\text{NNLO}} = \underbrace{\left(\int d\Phi_n V_2 + \int d\Phi_{n+2} S_{n+2}^{(1)} + \int d\Phi_{n+2} S_{n+2}\right) \mathcal{O}_n}_{double \ virtual} + \underbrace{\left(\int d\Phi_{n+1} VR \mathcal{O}_{n+1} - \int d\Phi_{n+1} S_n^{(1)} \mathcal{O}_n + \int d\Phi_{n+2} S_{n+1} \mathcal{O}_{n+1}\right)}_{real \ virtual(single \ unresolved \ and \ resolved)} + \int d\Phi_{n+2} (R \mathcal{O}_{n+2} - S_{n+1} \mathcal{O}_{n+1} - S_{n+2} \mathcal{O}_n)$$

double real (double/single unresolved, and double resolved)

In kinematics, there are n + 2, n + 1, and n particle final state

$$\delta\sigma_{\text{NNLO}} = \int_{0}^{t_0} d\sigma_{(2)}^n + \int_{t_n}^{t_{n+1}} d\sigma_{(2)}^{n+1} + \int_{t_{n+1}} d\sigma_{(2)}^{n+2}$$

How to defined a NLO parton shower?

expected to have a similar structure as NNLO does

expected to resummed the singular terms in NNLO corrections

In kinematics, there are n + 2, n + 1, and n particle final state

 $\delta\sigma_{
m N}$

Parton shower algorithm requires

we want to get $\int_{t_n}^{t_{n+1}}$

$$\sigma_{\rm NLO}^{\rm PS} = \sigma_0 \Pi_i \left(\Delta_i(Q^2, Q_0^2) + \int_{Q_0^2}^{Q^2} \frac{dq^2}{q^2} \Delta_i(Q^2, q^2) \int dz P_{ji}(z) \right) \qquad \int_0^{t_0} d\sigma_{(2)}^n \text{ is obtained from unitarity}$$

with radiation

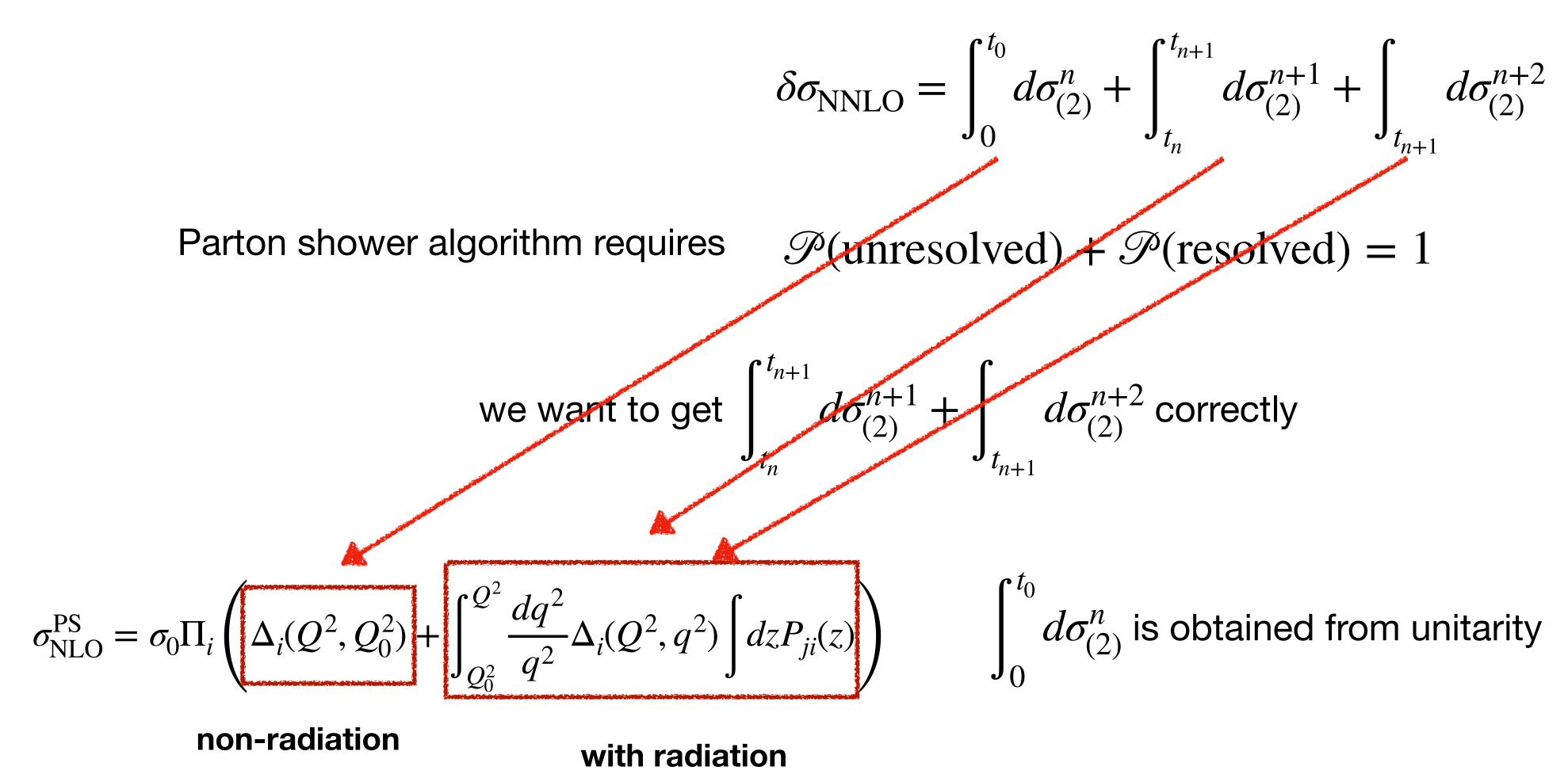
non-radiation

NNLO =
$$\int_{0}^{t_{0}} d\sigma_{(2)}^{n} + \int_{t_{n}}^{t_{n+1}} d\sigma_{(2)}^{n+1} + \int_{t_{n+1}} d\sigma_{(2)}^{n+2}$$

 $\mathscr{P}(unresolved) + \mathscr{P}(resolved) = 1$

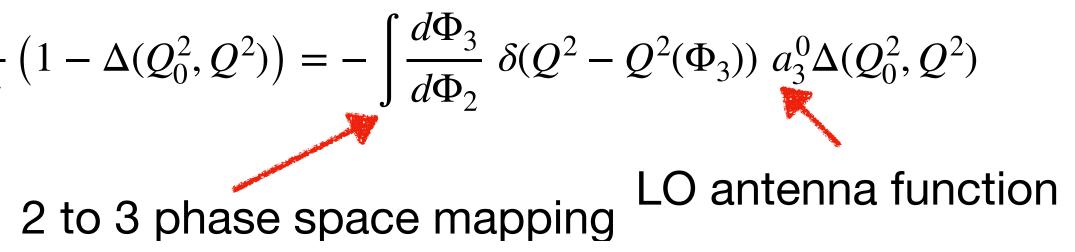
$$d\sigma_{(2)}^{n+1} + \int_{t_{n+1}} d\sigma_{(2)}^{n+2} \text{ correctly}$$

In kinematics, there are n + 2, n + 1, and n particle final state



$$\frac{d}{dQ^2} \left(1 - \Delta(Q)\right)$$

LO parton shower

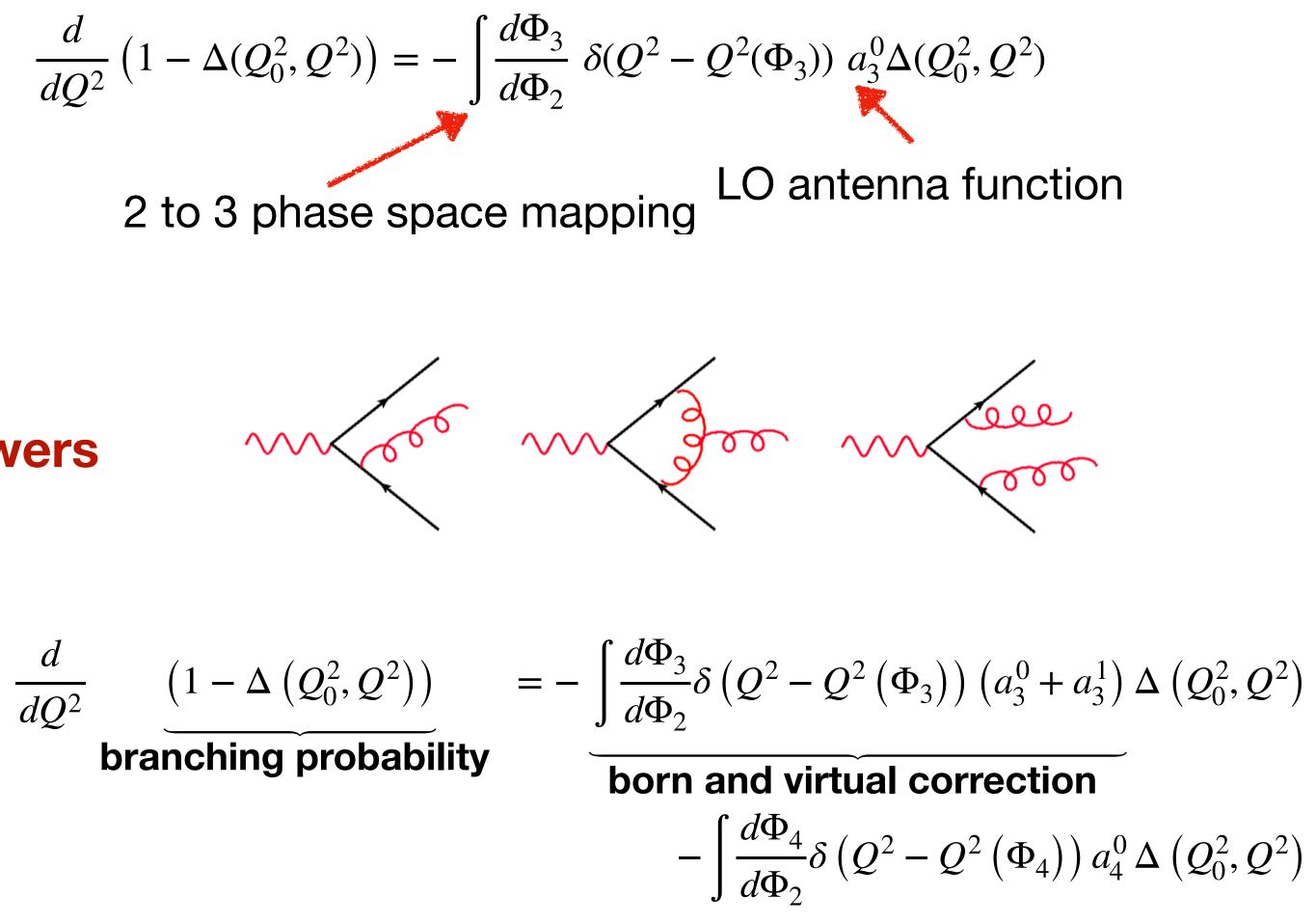


$$\frac{d}{dQ^2} \left(1 - \Delta(Q$$

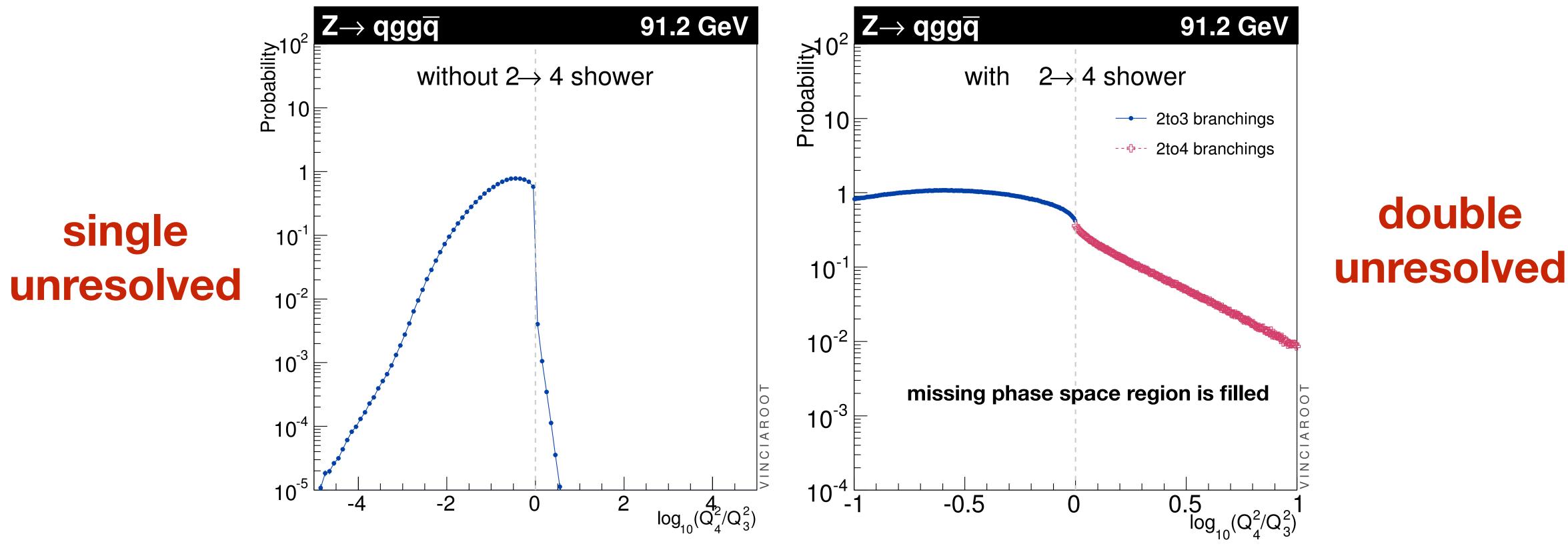
LO parton shower

What we expect for NLO showers

NLO parton shower

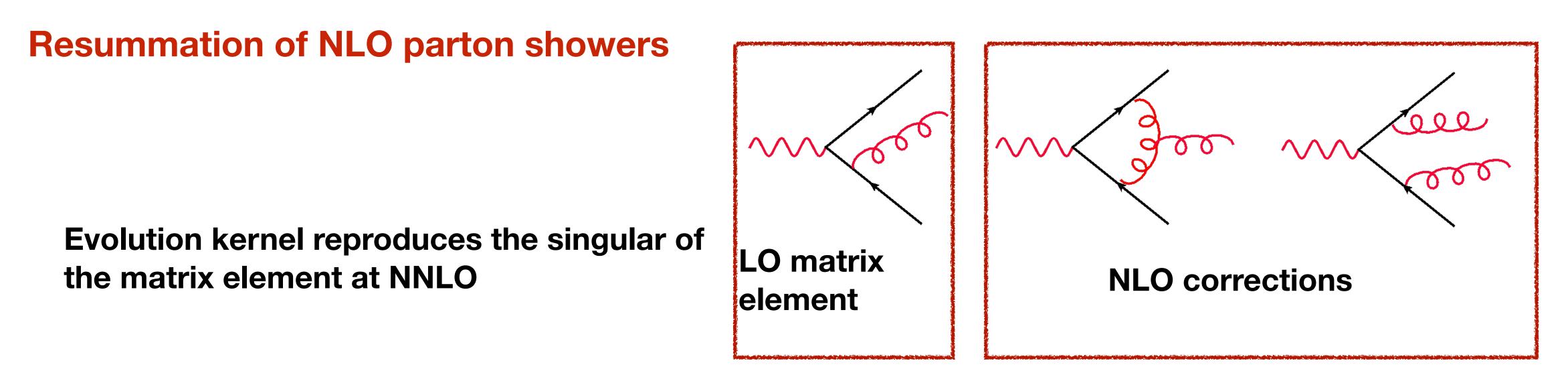


real correction



consistently matches onto the $2 \rightarrow 3$ result.

 $2 \rightarrow 4$ shower fills in the unordered phase space, and, in the limit $Q_4 \sim Q_3$,



3 parton final state

Many efforts in this direction

And also parton showers beyond Leading color, Nagy, Soper, 2019; DeAngels, Forshw, Platzer, 2020; Hamilton etal 2021

3+4 parton final state

Two-loop anomalous dimensions are included correctly at leading color

resummation beyond NLL

NNLL if three loop cusp included

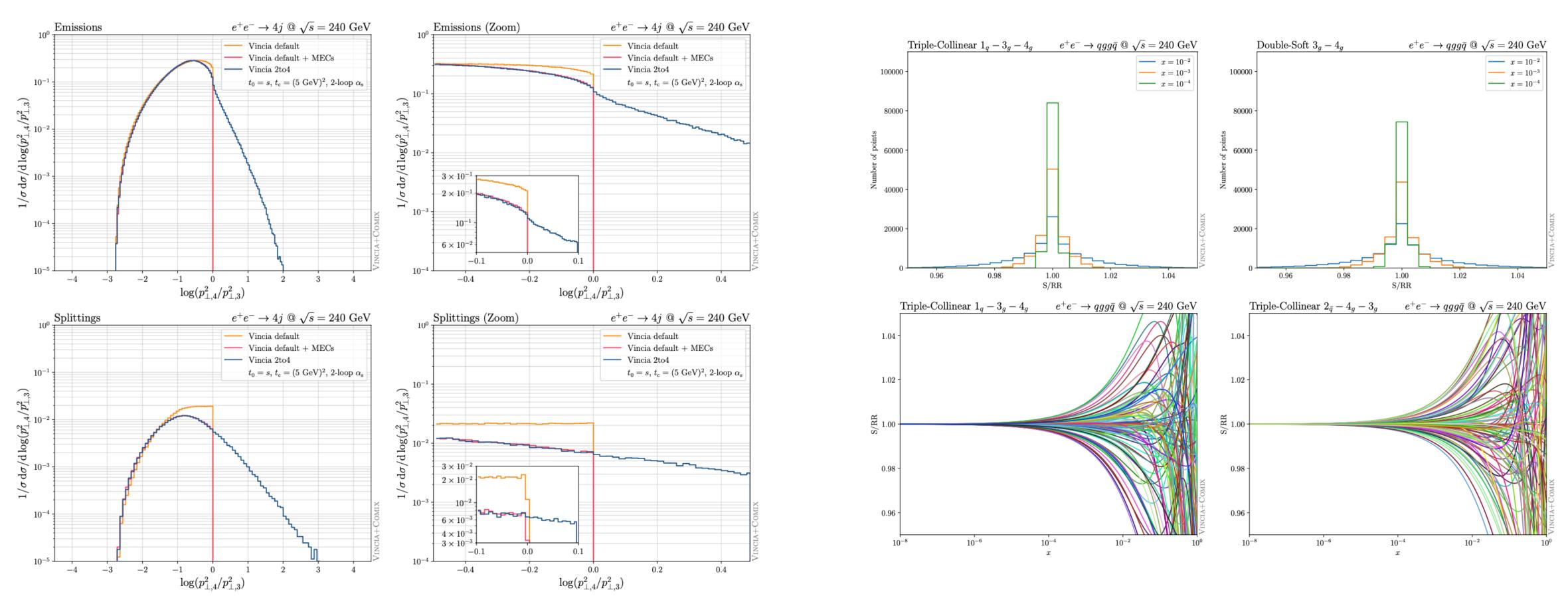
Dulat, Prestel, Hoche, 2018; HTL, Skands, 2017



NLO Matching

Matching using NLO antenna shower

Expanding the Sudakov factor to NNLO and compare it with full NNLO corrections



 $\Delta_{2}^{\text{NLO}}(t_{0},t) = \exp\left\{-\int_{t}^{t_{0}} d\Phi_{+1} A_{2\mapsto3}^{(0)}(\Phi_{+1}) w_{2\mapsto3}^{\text{NLO}}(\Phi_{2},\Phi_{+1})\right\} \times \exp\left\{-\int_{t}^{t_{0}} d\Phi_{+2}^{>} A_{2\mapsto4}^{(0)}(\Phi_{+2}) w_{2\mapsto4}^{\text{LO}}(\Phi_{2},\Phi_{+2})\right\}$

First fully differentially matching

O conserve flavor and four momentum, and

O constructed with the assumption unitarity,

scale to hadronization scale.

D Briefly discussed antenna shower and its NLO corrections

Summary

- Parton showers are built on soft and collinear approximations to the full cross sections
- Showers generate singular parts of higher-order matrix elements and evolve events from high
- The NLO shower can be matched to NNLO QCD corrections fully differentially

Indispensable tools for particle physics phenomenology at hadron colliders.

O conserve flavor and four momentum, and

O constructed with the assumption unitarity,

scale to hadronization scale.

D Briefly discussed antenna shower and its NLO corrections

Thank you!

Summary

- Parton showers are built on soft and collinear approximations to the full cross sections
- Showers generate singular parts of higher-order matrix elements and evolve events from high
- The NLO shower can be matched to NNLO QCD corrections fully differentially
- Indispensable tools for particle physics phenomenology at hadron colliders.

