Recent charm results at Belle and Belle II experiments

Charm sample	CPV in charmed baryon	CPV in charmed meson	Ξ_c^+ SCS decays O	Summary O
感谢邀请。	我与大连的美丽相约			

- 2016年8月第一次来大连,参加 BESIII R-QCD 研讨会。⇒ 到高能所做博后这事"谈妥"。
- 2019年5月第二次来大连,参加 Belle II 中国组研讨会。⇒ 收到辛辛那提大学的博士后 offer。
- 今年我入职湖南师大,有幸再来大连这个"福地"。

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Charm sample	CPV in charmed baryon	CPV in charmed meson	Ξ_c^+ SCS decays	Summary O
Outline				

1 Charm sample at Belle and Belle II 2 CPV searches in $\Lambda_c^+ \to \Lambda h^+$, $\Sigma^0 h^+$ 3 CPV searches in $D_{(s)}^+ \to K_S^0 K^- \pi^+ \pi^+$ 4 Observation of $\Xi_c^+ \to p K_S^0$, $\Lambda \pi^+$, $\Sigma^0 \pi^+$ 5 Summary

三日 のへで

・ロト ・四ト ・ヨト ・ヨト

Charm sample ●OO	CPV in charmed baryon	CPV in charmed meson	Ξ_c^+ SCS decays O	Summary O
Charm production	at Relle and Relle II			

- At Belle (II), e^+e^- mainly collide at 10.58 GeV to make Y(4S) resonance decaying into $B\bar{B}$ in 96% of the time.
- Meanwhile, continuum processes $e^+e^- o q\overline{q}$ (q = u, d, s, c) have large cross sections.
- Two ways to produce the charm sample: $e^+e^- \rightarrow c\bar{c}$ ($\sigma = 1.3$ nb), and $B \rightarrow$ charm decays.

۲

▲□▶ ▲冊▶ ▲ヨ▶ ▲ヨ▶ ヨヨヨ のの⊙

Charm sample ○○●	CPV in charmed baryon	CPV in charmed meson	Ξ_c^+ SCS decays O	Summary O
Charm results at B	elle and Belle II in latest	two years	我主导或参与的分析占30%	
 Charm lifetimes: τ(D_s⁺) [PRL 131, 17 Charm <i>CP</i> violation Δ^{TP}(D⁰ → K⁰K⁰ 	1803 (2023)] / $\tau(\Lambda_c^+)$ [PRL 130, 071802 (2023) : $\pi^+\pi^-$) [PRD 107, 052001 (2023)] / $\Lambda^{\text{TP}}(\Gamma)$] / $\tau(\Omega_c^0)$ [PRD 107, L031103 (20	$[11102 (2022)] / A^{\text{TP}} (D^+ \rightarrow Kh\pi^+\pi^0)$	

- $\mathcal{A}_{CP}^{+}(D^{0} \to K_{S}^{0}K_{S}^{0}\pi^{+}\pi^{-})$ [PRD 107, 052001 (2023)] / $\mathcal{A}_{CP}^{+}(D_{(s)}^{-} \to K^{+}K_{S}^{0}h^{+}h^{-})$ [PRD 108, L11102 (2023)] / $\mathcal{A}_{CP}^{+}(D_{(s)}^{-} \to Kh\pi^{+}\pi^{0})$ [arXiv:2305.12806] / $\mathcal{A}_{CP}^{0}(\Lambda_{c}^{+} \to \Lambda h^{+}, \Sigma^{0}h^{+})$ [Science Bulletin 68 (2023) 583] / $\mathcal{A}_{CP}^{X}(D_{(s)}^{+} \to K_{S}^{0}K^{-}\pi^{+}\pi^{+})$ [using TP and QP, arXiv:2409.15777] / $\mathcal{A}_{CP}^{-}(D^{0} \to K_{S}^{0}K_{S}^{0})$ [preliminary]
- $D^0 \overline{D}^0$ mixing:
 - model-independent measurement of mixing parameter in $D^0 o K^0_S \pi^+ \pi^-$ [arXiv:2410.22961]
- \mathcal{B} and α of hadronic decays:
 - $\mathcal{B}(D_{c}^{+} \to K^{+}h^{-}\pi^{+}\pi^{0})$ [PRD 107, 033003 (2023)] / $\mathcal{B}(\Xi_{c}^{0} \to \Xi^{0}(\pi^{0},\eta,\eta'))$ and $\alpha(\Xi_{c}^{0} \to \Xi^{0}\pi^{0})$ [JHEP 10 (2024) 045] / $\mathcal{B}(\Lambda_{c}^{+} \to \Sigma^{+}(\pi^{0},\eta,\eta'))$ and $\alpha(\Lambda_{c}^{+} \to \Sigma^{+}\pi^{0})$ [PRD 107, 032003 (2023)] / $\mathcal{B}(\Lambda_{c}^{+} \to \rho K_{S}^{0}(K_{S}^{0},\eta))$ [PRD 107, 032004 (2023)] / $\mathcal{B}(\Omega_{c}^{0} \to \Xi^{-}h^{+},\Omega^{-}K^{+})$ [JHEP 01 (2023) 055] / $\mathcal{B}(\Lambda_{c}^{+} \to \rho K_{S}^{0}\pi^{0})$ [preliminary] / $\mathcal{B}(\Xi_{c}^{+} \to \rho K_{S}^{0},\Lambda\pi^{+},\Sigma^{0}\pi^{+})$ [preliminary]
- Rare or forbidden decays:

• $\Xi_c^0 \to \Xi^0 \ell^+ \ell^-$ [PRD 109, 052003 (2024)] / $D^0 \to p\ell$ [PRD 109, L031101 (2024)] / $D^0 \to h^- h^{(\prime)+} e^+ e^-$ [preliminary]

- Spectrum:
 - $\Lambda_c(2880, 2940)^+ \rightarrow pD^0$ [PRD 110, 032021 (2024)] / $\Lambda_c(2910)^+ \rightarrow \Sigma_c(2455)^0\pi^+$ [PRL 130, 031901 (2023)] / $\Lambda_c(2625)^+ \rightarrow \Sigma_c^{0,++}\pi^{+,-}$ [PRD 107, 032008 (2023)] / $\Sigma(1435)^* \rightarrow \Lambda\pi^\pm$ in $\Lambda_c^+ \rightarrow \Lambda\pi^+\pi^-\pi^-$ [PRL 130, 151903 (2023)]

うつつ 正面 エヨト エヨト エヨト ショー

Charm sample	CPV in charmed baryon	CPV in charmed meson	\mathbb{E}_{c}^{+} SCS decays O	Summ O

Why CPV and Charm CPV Special?

- Three necessary "Sakharov conditions" are:
 1) Baryon number violation; 2) C and CPV; 3) Interactions out of thermal equilibrium.
- The sole origin of CPV in Standard Model arising from the single complex phase of CKM matrix, is insufficient to account for the observed matter-antimatter asymmetry.
 ⇒ we need to search for new CPV sources beyond SM (a lasting hot topic).
- Charm CPV effect is very small ($\mathcal{O}(10^{-3})$ or smaller ^{*ab*}). New Physics may enhance it ^{*cd*}.
- In 2019, *CP* violation in *D* decays was found at LHCb ^e: $\Delta A_{CP}(D^0 \rightarrow K^+K^-, \pi^+\pi^-) = (-15.4 \pm 2.9) \times 10^{-4}$ (5.3 σ). Recently LHCb report the first evidence for direct CPV in a specific *D* decay ^f: $A_{\pi\pi}^{dr} = (2.32 \pm 0.61) \times 10^{-3}$. \Rightarrow to understand this CPV, study more channels and improve the precision on the existing measurements.
- CPV has been observed in all the open-flavored meson sector, but not yet established in the baryon sector. Baryogenesis, the process by which the baryon-antibaryon asymmetry of the universe developed, is directly related to baryon CPV ^g.
 ⇒ CPV search in charmed baryon is one of main targets of charm physics at Belle II.

^aH.-n. Li, C.-D. Lu, and F.-S. Yu, PRD 86, 036012 (2012) ^bH.-V. Cheng and C.-W. Chiang, PRD 104, 073003 (2021) ^cA. Dery and Y. Nir, JHEP 12, 104 (2019) ^cM. Saur and F.-S. Yu, Sci. Bull. 65, 1428 (2020) ^eLHCb, PRL 122, 211803 (2019) ^fLHCb, PRL 131, 091802 (2023) ^gM.E. Shaposhnikov, NPB 287, 757 (1987)

[A.D. Sakharov, Usp. Fiz. Nauk 161 (1991) 61]

ELE SOG

イロト イヨト イヨト イヨト

CPV in charmed baryon

CPV in charmed meson

 Ξ_c^+ SCS decays

Summary O

direct CPV in $\Lambda_c^+ o \Lambda K^+$, $\Sigma^0 K^+$

(Belle) Science Bulletin 68 (2023) 583

- The raw asymmetry of $\Lambda_c^+ \to \Lambda h^+$ includes several asymmetry sources: $A_{raw}(\Lambda_c^+ \to \Lambda K^+) \approx \mathcal{A}_{CP}^{\Lambda_c^+ \to \Lambda K^+} + \mathcal{A}_{CP}^{\Lambda_c \to \rho \pi^-} + \mathcal{A}_{\ell}^{\Lambda} + \mathcal{A}_{\ell}^{K^+} + \mathcal{A}_{FB}^{\Lambda_c^+}$ $A_{raw}(\Lambda_c^+ \to \Lambda \pi^+) \approx \mathcal{A}_{CP}^{\Lambda_c^+ \to \Lambda \pi^+} + \mathcal{A}_{CP}^{\Lambda_c \to \rho \pi^-} + \mathcal{A}_{\ell}^{\Lambda} + \mathcal{A}_{\ell}^{R^+} + \mathcal{A}_{FB}^{\Lambda_c^+}$ • $\mathcal{A}_{CP}^{\Lambda_c^+ \to \Lambda h^+} (\mathcal{A}_{CP}^{\Lambda_c \to \rho \pi^-})$: *CP* asymmetry associated with Λ_c^+ (Λ) decay, • $\mathcal{A}_{\ell}^{\Lambda_c^+}$ detection asymmetry arising from efficiencies between Λ and $\overline{\Lambda}$. • $\mathcal{A}_{\ell}^{h^+}$: removed by widthing $w_{\Lambda_c^+, \overline{\Lambda_c^-}} = 1 \mp \mathcal{A}_{\ell}^{K^+} [\cos \theta, \rho_T]$ • $\mathcal{A}_{\ell}^{K^+}$: $D^0 \to K^- \pi^+$ and $D_s^+ \to \phi \pi^+$ • $\mathcal{A}_{\ell B}^{\pi^+}$: $D^+ \to K^- \pi^+ \pi^+$ and $D^0 \to K^- \pi^+ \pi^0$ • $\mathcal{A}_{FB}^{\Lambda_c^+}$ arises from the forward-backward asymmetry (FBA) of Λ_c^+ production due to γ^{-Z^0} interference and higher-order QED effects in $e^+e^- \to c\overline{c}$ collisions.
- Result: $\Delta A_{\text{raw}} = A_{\text{raw}}^{\text{corr}}(\Lambda_c^+ \to \Lambda K^+) A_{\text{raw}}^{\text{corr}}(\Lambda_c^+ \to \Lambda \pi^+) = \mathcal{A}_{CP}^{\text{dir}}(\Lambda_c^+ \to \Lambda K^+) \mathcal{A}_{CP}^{\text{corr}}(\Lambda_c^+ \to \Lambda \pi^+) = \mathcal{A}_{CP}^{\text{dir}}(\Lambda_c^+ \to \Lambda K^+)$

The reference mode and signal mode have nearly same Λ kinematic distributions, including the Λ decay length, the polar angle and the momentum of the proton and pion in the laboratory reference frame.

First \mathcal{A}_{CP}^{dir} for SCS two-body decays of charmed baryons.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□□ ◇Q○

CPV in charmed baryon

CPV in charmed meson

lpha-induced CPV in $\Lambda_c^+ o \Lambda K^+$, $\Sigma^0 K^+$

(Belle) Science Bulletin 68 (2023) 583

(SCS) $\Lambda_c^+ o \Lambda K^+$, $\Sigma^0 K^+$

- Measure $\alpha/\bar{\alpha}$ for the separate $\Lambda_c^+/\bar{\Lambda}_c^-$ samples.
- Calculate $\mathcal{A}_{CP}^{\alpha} \equiv (\alpha_{\Lambda_c^+} + \alpha_{\overline{\Lambda_c}^-})/(\alpha_{\Lambda_c^+} \alpha_{\overline{\Lambda_c}^-}).$

- Result: $\mathcal{A}^{\alpha}_{CP}(\Lambda^{+}_{c} \to \Lambda K^{+}) = -0.023 \pm 0.086 \pm 0.071$ $\mathcal{A}^{\alpha}_{CP}(\Lambda^{+}_{c} \to \Sigma^{0}K^{+}) = +0.08 \pm 0.35 \pm 0.14$ First $\mathcal{A}^{\alpha}_{CP}$ results for charmed baryon SCS decays.
- No evidence of CPV is found.

- Probe *A*-hyperon CPV in charmed baryon CF decays, inspired by PLB 849 (2024) 138460 (JP Wang, FS Yu).
- Under a reasonable assumption $lpha_{\Lambda_{c}^{+}} = -lpha_{\overline{\Lambda}_{c}^{-}}$ in CF decays,

we have $\mathcal{A}^{\alpha}_{CP}(\Lambda o p\pi^{-}) = \mathcal{A}^{\alpha}_{CP}(\text{total}) \equiv \frac{{}^{\alpha}_{\Lambda c} L^{\alpha} - {}^{\alpha}_{\Lambda} \overline{\Lambda_{c}}^{\alpha} + {}^{\alpha}_{\Lambda_{c}}}{{}^{\alpha}_{\Lambda c} L^{\alpha} - {}^{\alpha}_{\Lambda_{c}} \overline{\Lambda_{c}}^{\alpha} + {}^{\alpha}_{\Lambda_{c}}}$

• Result: $\mathcal{A}^{\alpha}_{CP}(\Lambda \rightarrow p\pi^{-}) = +0.013 \pm 0.007 \pm 0.011$ The first result of hyperon CPV in charm CF decays

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□□ ◇Q○

• CPV searches in several four-body D-decays at FOCUS,

C_{TP} asymmetry: so-called 'up-down asymmetry'

• CPV in $D_{(s)}^+ \to K_s^0 K^- \pi^+ \pi^+$: never been searched. They have large branching fractions $\mathcal{B} = 0.23\%(1.53\%)$ $\Rightarrow \mathcal{O}(10^5)$ signals expected, inspiring us to obtain their precise $a_{CP}^{T-\text{odd}}$ results for the first time. Current world averages of all $a_{CD}^{T-\text{odd}}$ measurements: $D^0 \rightarrow K_e \pi^* \pi^- \pi^0$ (CF) (-0.28±1.38^{+0.23})×10⁻³ [Belle] $D^0 \rightarrow K^+ K^- \pi^+ \pi^- (SCS)$ (3.5±2.1)×10⁻³ (FOCUS/ BaBar/ LHCb/ Belle) (-1.95±1.42^{+0.14}_{-0.12})% $D^0 \rightarrow K_s K_s \pi^+ \pi^- (SCS)$ $D^+ \rightarrow K_S K^+ K^- \pi^+ (CE)$ (-3.34±2.68)% [Belle] $D^+ \rightarrow K^- \pi^+ \pi^+ \pi^0$ (CE) (0.2+1.5+0.8)×10⁻³ Belle $D^+ \rightarrow K_e K^+ \pi^+ \pi^- (SCS)$ (-2.7±7.1)×10⁻³ [FOCUS/ BaBar/ Belle] $D^+ \rightarrow K^- K^+ \pi^+ \pi^0$ (SCS) (2.6±6.6±1.3)×10-3 [Belle] $D^+ \rightarrow K^+ \pi^- \pi^+ \pi^0$ (DCS) (-1.3±4.2±0.1)% $D_s^+ \rightarrow K_c K^+ \pi^+ \pi^- (CF)$ (-8.2±5.2)×10⁻³ [FOCUS/ BaBar/ Belle] $D^+_{-}\rightarrow K^+K^-\pi^+\pi^0$ (CF) (2.2+3.3+4.3)×10-3 [Belle] $D_{n}^{+} \rightarrow K^{+} \pi^{-} \pi^{+} \pi^{0}$ (SCS (-1.1±2.2±0.1)% Î Relle1 -0.06 -0.04 -0.02 0.02 0.04 0.06 a^{T-odd}

イロト 人間ト イヨト イヨト

E DQC

Charm sample	CPV in charmed baryon	CPV in charmed meson ○●○○○	Ξ_c^+ SCS decays O	Summary O
CPV searches using	g quadruple product	(Belle a	nd Belle II), arXiv:2409.15777	
• We do the first CPV $D^+_{(s)} \rightarrow K^0_S K^- \pi^+ \pi^+$ where the subscripts ('	/ search with the quadruple-prod : $X = C_{QP} = (\vec{p}_{K^-} \times \vec{p}_{\pi_h^+}) \cdot (\vec{p}_K)$ h' and 'l') denote the π^+ with higher	$\begin{array}{llllllllllllllllllllllllllllllllllll$	$C_{\rm QP} > 0$: \vec{p}_{K^-} at left-side of $\vec{p}_{K_{\rm S}^0\pi^+}(\vec{p}_{K_{\rm S}^0})$	$\times \vec{p}_{\pi^+}$) plane

momentum, respectively, of two identical π^+ in the final state.

- $D o V_a V_b$ (e.g. $D^+_{(s)} o \overline{K}^{*0} K^{*+}$ is a dominant process) amplitude involves terms of
 - (1) $d_{1,0}^2(\theta_a)d_{1,0}^2(\theta_b)\sin\varphi \propto \sin(2\theta_a)\sin(2\theta_b)\sin\varphi$,
 - (2) $d_{1,0}^2(\theta_a) d_{1,0}^2(\theta_b) \cos \varphi \propto \sin(2\theta_a) \sin(2\theta_b) \cos \varphi$.

• two more observables for CPV searches^a:

- $X = \cos \theta_{K_S^0} \cos \theta_{K^-} C_{TP}$: same sign as $\cos \theta_{K_S^0} \cos \theta_{K^-} \sin \varphi$, • $X = \cos \theta_{K_S^0} \cos \theta_{K^-} C_{QP}$: same sign as $\cos \theta_{K_S^0} \cos \theta_{K^-} \cos \varphi$.
- $X = \cos \theta_{K_S^0} \cos \theta_{K^-}$ is used for charm CPV searches; its asymmetry is the so-called 'two-fold forward-backward asymmetry'^b.

^aG. Durieux and Y. Grossman, Phys. Rev. **92**, 076013 (2015) ^bZ.-H. Zhang, Phys. Rev. D **107**, L011301 (2023)

$$C_{\rm QP} < 0: \ \vec{p}_{K^-} \ \text{at right-side of} \ \vec{p}_{K_c^0\pi^+}(\vec{p}_{K_c^0}\times\vec{p}_{\pi^+}) \ \text{plane}$$

C_{QP} asymmetry: so-called 'left-right asymmetry'.

۲

李龙科,湖南师大

Recent charm results at Belle I

2024年11月3日于大连 11/15

3 3 9 9 9

・ロット (雪) (日) (日)

李龙科,湖南师大

82 183 184 185 186 187 188 189 19

M(D⁺) [GeV/c²]

2024年11月3日于大连 12/15

ъ

82 183 184 185 186 187 188 189 19

M(D⁺) [GeV/c²]

Charm sample	CPV in charmed baryon	CPV in charmed meson ○○○○●	Ξ_c^+ SCS decays	Summary O
Final $\mathcal{A}_{C\!P}^{\chi}$ me	easurement in $D^+_{(s)} o {\mathcal K}^0_{\mathcal S}$	$K^-\pi^+\pi^+$ (Belle :	and Belle II), arXiv:2409.15777	
			D1 0 D0 0	

• combining the results from Belle and Belle II experiments: $\mathcal{A}_{CP}^{\chi}(avg.) = \frac{\mathcal{A}_{CP}^{\rho_L}/\sigma_{E1}^{\sigma_L} + \mathcal{A}_{CP}^{\rho_L}/\sigma_{E2}^{\sigma_L}}{1/\sigma_{E1}^2 + 1/\sigma_{E2}^2}$, and its uncertainty

 $\sigma_{\mathcal{A}_{CP}^{\chi}(\text{avg.})} = \frac{1}{\sqrt{1/\sigma_{B1}^2 + 1/\sigma_{B2}^2}}, \text{ where } \sigma_{B_1} \text{ and } \sigma_{B_2} \text{ are the total uncertainties (i.e. } \sigma_{\text{stat}} \oplus \sigma_{\text{syst}}) \text{ at Belle and Belle II.}$

• The \mathcal{A}_{CP}^{χ} results at Belle and Belle II and their combined results:

Decay	Х	$\mathcal{A}_{C\!P}^{\chi}$ (10 $^{-3}$) at Belle	$\mathcal{A}_{C\!P}^{\chi}$ (10 $^{-3}$) at Belle II	Combined \mathcal{A}_{CP}^{χ} (10 ⁻³)	Significance
	C_{TP}	$-4.0\pm5.9\pm3.0$	$-0.2 \pm 7.0 \pm 1.8$	$-2.3{\pm}4.5{\pm}1.5$	0.5 σ
	$C_{\rm QP}$	$-1.0\pm5.9\pm2.5$	$-0.4\pm7.0\pm2.4$	$-0.7\pm4.5\pm1.7$	0.2σ
$D^+ \rightarrow \kappa^0 \kappa^- \pi^+ \pi^+$	$C_{\rm TP}C_{\rm QP}$	$+6.4 \pm 5.9 \pm 2.2$	$+0.6 \pm 7.0 \pm 1.3$	$+3.9\pm4.5\pm1.1$	0.8σ
$D \rightarrow K_S K h h$	$\cos \theta_{K_{\rm S}^0} \cos \theta_{K^-}$	$-4.7\pm5.9\pm3.0$	$-0.6 \pm 6.9 \pm 3.0$	$-2.9\pm4.5\pm2.1$	0.6σ
	$\cos \theta_{K_{\rm S}^0} \cos \theta_{K^-} C_{\rm TP}$	$+1.9\pm5.9\pm2.0$	$-0.2\pm7.0\pm1.9$	$+1.0\pm4.5\pm1.4$	0.2σ
	$\cos heta_{K_{ m S}^0} \cos heta_{K^-} C_{ m QP}$	$+14.9 \pm 5.9 \pm 1.4$	$+7.0 \pm 7.0 \pm 1.6$	$+11.6 \pm 4.5 \pm 1.1$	2.5σ
	C_{TP}	$-0.3 \pm 3.1 \pm 1.3$	$+1.0\pm3.9\pm1.1$	$+0.2{\pm}2.4{\pm}0.8$	0 .1 <i>σ</i>
	$C_{\rm QP}$	$+0.6 \pm 3.1 \pm 1.2$	$+2.0 \pm 3.9 \pm 1.4$	$+1.1 \pm 2.4 \pm 0.9$	0.4σ
$D^+ \rightarrow K^+ K^- \pi^+ \pi^0$	$C_{\rm TP}C_{\rm QP}$	$+1.5 \pm 3.2 \pm 1.4$	$-2.7 \pm 3.9 \pm 1.7$	$-0.2 \pm 2.5 \pm 1.1$	0.1σ
$D_{s} \rightarrow \kappa \cdot \kappa \cdot \pi^{-} \pi^{+} \pi^{-}$	$\cos \theta_{K_{\rm S}^0} \cos \theta_{K^-}$	$-3.7 \pm 3.1 \pm 1.1$	$-6.3 \pm 3.9 \pm 1.2$	$-4.7\pm2.4\pm0.8$	1.8σ
	$\cos \theta_{K_{\rm S}^0} \cos \theta_{K^-} C_{\rm TP}$	$-4.4 \pm 3.2 \pm 1.4$	$+0.8\pm3.9\pm1.4$	$-2.2 \pm 2.5 \pm 1.0$	0.8σ
	$\cos heta_{K_{ m S}^0} \cos heta_{K^-} C_{ m QP}$	$-1.6 \pm 3.1 \pm 1.3$	$-0.0 \pm 3.9 \pm 1.7$	$-1.0 \pm 2.4 \pm 1.0$	0.4 σ

CPV in charmed baryon

CPV in charmed meson

Observation of (SCS) $\Xi_c^+ \to p K_{\rm S}^0$, $\Lambda \pi^+$, $\Sigma^0 \pi^+$

(Belle and Belle II) Preliminary, 主导: 复旦 + 吉大 + 湖南师大

• In hadronic decays of charmed baryons, nonfactorizable contributions from the internal *W*-emission and *W*-exchange diagrams play an essential role and cannot be neglected. e.g.

- SCS charm decays provide good probes for CP violation.
- First observation of such SCS Ξ_c^+ -decays using B+B2 data:

•
$$\frac{\mathcal{B}(\Xi_c^+ \to \rho K_0^0)}{\mathcal{B}(\Xi_c^+ \to \Xi^- \pi^+ \pi^+)} = (2.47 \pm 0.16 \pm 0.07)\%$$

•
$$\frac{\mathcal{B}(\Xi_c^+ \to \Lambda \pi^+)}{\mathcal{B}(\Xi_c^+ \to \Xi^- \pi^+ \pi^+)} = (1.56 \pm 0.14 \pm 0.09)\%$$

$$\frac{\mathcal{B}(\Xi_c^+ \to \Sigma^0 \pi^+)}{\mathcal{B}(\Xi_c^+ \to \Sigma^0 \pi^+)} = (1.10 \pm 0.05 \pm 0.02)\%$$

•
$$\frac{\mathcal{B}(\Xi_c^+ \to \Sigma^0 \pi^+)}{\mathcal{B}(\Xi_c^+ \to \Xi^- \pi^+ \pi^+)} = (4.13 \pm 0.26 \pm 0.22)\%$$

• using W.A. $\mathcal{B}(\Xi_c^+ \to \Xi^- \pi^+ \pi^+)$ to obtain their absolute \mathcal{B} 's.

Charm	sample
000	

CPV in charmed baryon

CPV in charmed meson

 Ξ_c^+ SCS decays

总结和展望

- Belle Ⅱ 已经加入"战场",现可使用 (B+B2)1.5 ab⁻¹ 的数据。
- 桑物理成果正在持续产生:继第一波粲强子寿命的高精度测量后, 现在我们迎来了多方位的研究工作:
 - 粲介子 CP 破坏的寻找: 首个粲 CPV 结果, 新方法、新模式
 - 粲重子 CP 破坏的寻找 (遗憾没有底味重子源)
 - 粲强子衰变的分支比、角分布、振幅的分析。
 - 粲强子激发态的寻找和研究。
- 理论与实验融合、实验与实验合作,取得了很好的成果。
 - 多听听理论家的报告(线上、线下)
 - 多和理论家喝咖啡或茶("闲"聊)
 - 在高校院系间, 多串串门
- 青椒的我再接再厉,正争取各种合作与交流的机会。
 - 例如和湖南师大的理论团队交流讨论: 谱学和 CPV 等。
 - 例如和辽师合作: 粲重子新型衰变模式和粲重子激发态的寻找等。
- 未来 Belle II 更多数据,更多交流与合作,更多重要结果。

・ロト ・ 一下・ ・ ヨト・

E SQQ

Thank you for your attention.

谢谢!

Dr. Longke LI (李龙科) School of Physics and Electronics Hunan Normal University 36 LuShan Road, YueLu District, Changsha, 410081, P. R. China [™] lilongke_ustc

lilongke@mail.ustc.edu.cn

李龙科,湖南师大

Recent charm results at Belle II

2024年11月3日于大连 16/15

Comparison of available charm samples

Experiment	Machine	C.M.	Luminosity(fb^{-1})	N _{prod}	Efficiency	Characters
₿€SⅢ	$\frac{BEPC-II}{(e^+e^-)}$	3.77 GeV 4.18-4.23 GeV 4.6-4.7 GeV	20 7.3 4.5	$D^{0,+:}: 10^8 \ D_s^+: 5 imes 10^6 \ \Lambda_c^+: 0.8 imes 10^6 \ \star lpha$	~ 10-30%	 extremely clean environment quantum coherence no boost, no time-dept analysis
	${f SuperKEKB}\ (e^+e^-)$	10.58 GeV	500 (→ 50000)	$D^0: 10^9 (ightarrow 10^{11}) \ D^+_{(s)}: 10^8 (ightarrow 10^{10}) \ \Lambda^+: 10^7 (ightarrow 10^9)$	Ø(1.10%)	 bigh-efficiency detection of neutrals good trigger efficiency time-dependent analysis
	$\frac{KEKB}{(e^+e^-)}$	10.58 GeV	1000	$\begin{array}{c} D^{0,+}, D^{10} \\ D^{0,+}, D^{+}_{s}: 10^{9} \\ \Lambda^{+}_{c}: 10^{8} \\ \bigstar \\ \end{array}$	★★	© smaller cross-section than LHCb
LHCb	LHC (<i>pp</i>)	7+8 TeV 13 TeV	$\begin{array}{c} 1+2\\ 6+9\\ (\rightarrow 23\rightarrow 50)\end{array}$	5×10^{12} 10^{13} $\star \star \star \star$	O(0.1%) ★	© very large production cross-section © large boost, excellent time resolution © more charm sources © dedicated trigger required

Here uses $\sigma(D^0 \overline{D}^0 @3.77 \text{ GeV}) = 3.61 \text{ nb}, \sigma(D^+D^-@3.77 \text{ GeV}) = 2.88 \text{ nb}, \sigma(D_s^* D_s @4.17 \text{ GeV}) = 0.967 \text{ nb}; \sigma(cc@10.58 \text{ GeV}) = 1.3 \text{ nb} \text{ where each } cc \text{ event averagely has } 1.1/0.6/0.3 D^0/D^+/D_s^+$ yields; $\sigma(D^0 @CDF) = 13.3 \mu$ b, and $\sigma(D^0 @LHCb) = 1661 \mu$ b, mainly from Int. J. Mod. Phys. A 29(2014)24,14300518.

• BESIII, Belle II, and LHCb experiments have their advantages for charm studies.

▲□▶ ▲冊▶ ▲ヨ▶ ▲ヨ▶ ヨヨヨ のの⊙

from KEKB to SuperKEKB

- ▶ As 1st and 2nd generation B-factories, KEKB and SuperKEKB have many similarities, and more differences:
 - Damping ring added to have low emittance positrons / use 'Nano-beam' scheme by squeezing the beta function at the IP.
 - beam energy: admit lower asymmetry to mitigate Touschek effects / beam current: ×2 to contribute to higher luminosity.
 - SuperKEKB achieved the luminosity record of $4.7 \times 10^{34} \ cm^{-2} s^{-1}$.

李龙科,湖南师大

h

Detector: Belle II Vs. Belle

李龙科,湖南师大

Recent charm results at Belle II

2024年11月3日于大连 19/15

Lenz, IJMP A30 (2015) Lenz et al., JHEP 12 (2020) 199 King, Lenz et al., JHEP 08 (2022) 241 Gratrex et al., JHEP 07 (2022) 058

Theory:

- qualitatively understood in terms of simple diagrams, e.g., c → s e⁺v partial width gives G_i²m², |V_a|²/(192π³) dependence. Long D⁻ lifetime can be understood as arising from destructive interference between spectator and colorsuppressed amplitudes. But this doesn't include QCD...
- to include QCD: calculate using the Heavy Quark Expansion

$$\begin{split} \Gamma(D) &= \ \frac{1}{2m_D} \sum_{X} \int_{\mathcal{P}_S} (2\pi)^4 \delta^{(4)}(p_D - p_X) \ |\langle X(p_X) | \mathcal{H}_{\text{eff}} | D(p_D) \rangle|^2, \\ &\rightarrow \ \frac{1}{2m_D} \text{Im} \langle D | \mathcal{T} | D \rangle \quad \text{where} \quad \mathcal{T} = i \int d^4x \ \mathcal{T} \left\{ \mathcal{H}_{\text{eff}}(x) , \mathcal{H}_{\text{eff}}(0) \right\} \\ &\rightarrow \ \Gamma_3 + \Gamma_5 \frac{\langle \mathcal{O}_5 \rangle}{m_c^2} + \Gamma_6 \frac{\langle \mathcal{O}_6 \rangle}{m_c^3} + \ldots + 16\pi^2 \left(\tilde{\Gamma}_6 \frac{\langle \tilde{\mathcal{O}}_6 \rangle}{m_c^3} + \tilde{\Gamma}_7 \frac{\langle \tilde{\mathcal{O}}_7 \rangle}{m_c^4} + \ldots \right) \end{split}$$

Wilson coefficients Γ_i are expanded in powers of α_s and calculated perturbatively

⇒ comparing lifetime calculations with measurements tests/improves our understanding of QCD

W

A. J. Schwartz Charm lifetimes, semileptonic decays at Belle II

Time-integrated CP asymmetry in $D^0 \rightarrow K_c^0 K_c^0$

- The time-integrated *CP* asymmetry $\mathcal{A}_{CP}(D^0 \to K^0_S K^0_S) = \frac{\Gamma(D^0 \to K^0_S K^0_S) \Gamma(\overline{D}^0 \to K^0_S K^0_S)}{\Gamma(D^0 \to K^0 K^0) + \Gamma(\overline{D}^0 \to K^0 K^0)}.$
- It may be enhanced to be an observable level (the 1% level) within the Standard Model, due to the interference of $c \rightarrow us\overline{s}$ and $c \rightarrow ud\overline{d}$ amplitudes. [PRD 99, 113001 (2019), PRD 86, 014023 (2012), PRD 92, 054036 (2015)]

• World average: $A_{CP}(D^0 \rightarrow K_s^0 K_s^0) = (-1.9 \pm 1.0)\%$ is dominated by

- Belle (921 fb⁻¹): $\mathcal{A}_{CP}^{K_S^0 K_S^0} = (-0.02 \pm 1.53 \pm 0.02 \pm 0.17)\%$ using $D^0 \to K_S^0 \pi^0$ as control mode [PRL 119, 171801 (2017)] LHCb (6 fb⁻¹): $\mathcal{A}_{CP}^{K_S^0 K_S^0} = (-3.1 \pm 1.2 \pm 0.4 \pm 0.2)\%$ using $D^0 \to K^+ K^-$ as control mode [PRD 104, L031102 (2021)]
- $\mathcal{A}_{CP}(D^0 \to K^+K^-)$: recently improved by LHCb, uncertainty < 0.1% [PRL 131, 091802 (2023)]

Time-integrated *CP* asymmetry in $D^0 \rightarrow K_c^0 K_c^0$

• Measure
$$\mathcal{A}_{CP}(D^0 \to K_5^0 K_5^0)$$
, using $D^0 \to K^+ K^-$ as control mode, with $D^{*+} \to D^0 \pi_s^+$ sample at B+B2 (1.4 ab⁻¹).
 $\mathcal{A}_{raw}(D^0 \to f) = \frac{\mathcal{N}(D^0) - \mathcal{N}(\overline{D}^0)}{\mathcal{N}(D^0) + \mathcal{N}(\overline{D}^0)} = \mathcal{A}_{FB}^{D^*+} + \mathcal{A}_{CP}^{D^0 \to f} + \mathcal{A}_{\varepsilon}^{\pi_s}$

• $\mathcal{A}_{CD}^{K_0^0 K_0^0} = (\mathcal{A}_{raw}^{K_0^0 K_0^0} - \mathcal{A}_{raw}^{K^+ K^-}) + \mathcal{A}_{CD}^{K^+ K^-}$ assuming that the nuisance asymmetries are identical between two decays, or that they can be made so by weighting the control sample.

•
$$A_{CP}^{D^0 \to K^+ K^-} = A_{CP}^{dir}(D^0 \to K^+ K^-) + \Delta Y = (6.7 \pm 5.4) \times 10^{-4}$$
 [PRL 131, 091802 (2023), PRD 104, 072010 (2021)]

- $A_{CP}^{dir}(D^0 \to K^+K^-) = (7.7 \pm 5.7) \times 10^{-4}$: direct *CP* asymmetry [PRL 131, 091802 (2023)] $\Delta Y = (-1.0 \pm 1.1) \times 10^{-4}$: CPV in mixing and in the interference between mixing and decay [PRD 104, 072010 (2021)]
- Unbinned fit to $(m(D^0\pi_s), S_{\min})$ of D^0 and \overline{D}^0 candidates for $D^0 \to K_s^0 K_s^0$ decays.
 - Flight significance variable $S_{\min} = \log(\min(L_i/\sigma_i))$: separate the peaking background $D^0 \to K_c^0 \pi^+ \pi^-$.

4000

 $D^0 \rightarrow K^0_c K^0_c$

Belle $\int L dt = 980 \text{ fb}^{-1}$

+ Data

- Et

4 Data

 $\cdots D^0 \rightarrow K^+K^-$

 $= -D^0 \rightarrow K^- \pi^+$

- D⁰-s multibods

 $D^+_* \rightarrow K^+ K^- \pi$

Comb. back

- Fit

m(K*K*) [GeV/c2]

 $m(K^-K^+)$ [GeV/c²]

4 Date

 $D^0 \rightarrow K^+K^-$

 $= -D^0 \rightarrow K^- \pi^+$

 $-D^0 \rightarrow multibody$

 $D^+ \rightarrow K^+ K^- \pi$

Comb hack

- Die

- Belle II: (1.61 ± 0.27) %.
- final $A_{CP}(D^0 \rightarrow K^0_S K^0_S)$:
 - Belle: $(-1.1 \pm 1.6 \pm 0.1)\%)$.
 - Belle II: $(-2.2 \pm 2.3 \pm 0.1)\%)$.
 - combined: $(-1.4 \pm 1.3 \pm 0.1)$ %.
- Comparable precision to the world-best measurement from LHCb (6 fb⁻¹): $\sigma = 1.3\%$.
- An update using the non- D^{*+} sample is under working.
- Also CPV in other channels (e.g. $D^{+,0} \rightarrow \pi^{+,0}\pi^{0}$ うつつ 正面 エヨト エヨト エヨト ショー

3000 $\cdots D^0 \rightarrow K^0 K^0$ $D^{+} \rightarrow D^{0} (\rightarrow K^{+}K^{-}) \pi^{+}$ $= -D^0 \rightarrow K^0, \pi^+\pi$ $= D^{*+} \rightarrow D^0 (\rightarrow K^- \pi^+) \pi^+$ - Non-peaking back. 2000 $\longrightarrow D^{*+} \rightarrow D^{0} (\rightarrow maltibody) \pi^{+}$ Other background 1000 7 3 $m(D^{\dagger}\pi^{*})$ [GeV/c²] S....(K?) $m(D^0\pi^+)$ [GeV/c²] \mathcal{B} Belle Belle II (L dt = 428 fb-Belle II $\int L dt = 428 \text{ fb}^{-1}$ 3000 4 Data 4 Dec 2500 _____ E51 $\cdots D^0 \rightarrow K^0 K^0$ $D^{*+} \rightarrow D^{0} (\rightarrow K^{+}K^{-})\pi^{+}$ 2000 $= -D^0 \rightarrow K^0 \pi^+ \pi$ $= = D^{*+} \rightarrow D^0 (\rightarrow K^- \pi^+) \pi^+$ 1500 - Non-peaking back. $\longrightarrow D^{*+} \rightarrow D^{0} (\rightarrow multibody) \pi^{+}$ 1000 Other background 7 S....(K⁰) $m(D^{0}\pi^{*})$ [GeV/c]] $m(D^0\pi^+)$ [GeV/c³]

李龙科,湖南师大

A Dec

backup 0000000000000000

Equalization of kinematic-parameter distributions of $D^0 \rightarrow K^0_{ m S} K^0_{ m S}$, $K^+ K^-$

- E

4 A N

X-dependent efficiency in $D^+_{(s)} \to K^0_S K^- \pi^+ \pi^+$

۲

李龙科,湖南师大

• The internal W-emission and W-exchange amplitudes in $\Xi_c^0 \to \Xi^0 h^0$, to which only the nonfactorizable amplitude contribute.

 $\bullet\,$ Predictions of ${\cal B}$ (units of $10^{-3})$ and asymmetry parameter ($\alpha)$:

Reference	Model	$\mathcal{B}(\Xi_c^0 \rightarrow \Xi^0 \pi^0)$	$\mathcal{B}(\Xi_c^0 \rightarrow \Xi^0 \eta)$	$\mathcal{B}(\Xi_c^0 \rightarrow \Xi^0 \eta')$	$\alpha(\Xi_c^0 \rightarrow \Xi^0 \pi^0)$
Körner, Krämer [5]	Quark	0.5	3.2	11.6	0.92
Ivanov et al. [6]	Quark	0.5	3.7	4.1	0.94
Xu, Kamal [7]	Pole	7.7	-	-	0.92
Cheng, Tseng [8]	Pole	3.8	-	-	-0.78
Żenczykowski [9]	Pole	6.9	0.1	0.9	0.21
Zou et al. [10]	Pole	18.2	26.7	-	-0.77
Sharma, Verma [11]	CA	-	-	-	-0.8
Cheng, Tseng [8]	CA	17.1	-	-	0.54
Geng et al. [12]	$SU(3)_F$	4.3 ± 0.9	$1.7^{+1.0}_{-1.7}$	$8.6^{+11.0}_{-6.3}$	-
Geng et al. [13]	$SU(3)_F$	7.6 ± 1.0	10.3 ± 2.0	9.1 ± 4.1	$-1.00\substack{+0.07\\-0.00}$
Zhao et al. [14]	$SU(3)_F$	4.7 ± 0.9	8.3 ± 2.3	7.2 ± 1.9	-
Huang et al. [15]	$SU(3)_F$	2.56 ± 0.93	-	-	-0.23 ± 0.60
Hsiao et al. [16]	$SU(3)_F$	6.0 ± 1.2	$4.2^{+1.6}_{-1.3}$	-	-
Hsiao et al. [16]	$SU(3)_F$ -breaking	3.6 ± 1.2	7.3 ± 3.2	-	-
Zhong et al. [17]	$SU(3)_F$	$1.13\substack{+0.59\\-0.49}$	1.56 ± 1.92	$0.683^{+3.272}_{-3.268}$	$0.50\substack{+0.37\\-0.35}$
Zhong et al. [17]	$SU(3)_F$ -breaking	$7.74^{+2.52}_{-2.32}$	$2.43^{+2.79}_{-2.90}$	$1.63\substack{+5.09\\-5.14}$	$-0.29\substack{+0.20\\-0.17}$
Xing et al. [18]	$SU(3)_F$	1.30 ± 0.51	-	-	-0.28 ± 0.18
Geng et al. [19]	$SU(3)_F$	7.10 ± 0.41	2.94 ± 0.97	5.66 ± 0.93	-0.49 ± 0.09
Zhong et al. [20]	${\rm Diagrammatic-SU(3)_F}$	7.45 ± 0.64	2.87 ± 0.66	5.31 ± 1.33	-0.51 ± 0.08
Zhong et al. [20]	$Irreducible-SU(3)_F$	7.72 ± 0.65	2.28 ± 0.53	5.66 ± 1.62	-0.51 ± 0.09

backup 00000000000000000

Measurement of $\mathcal{B}(\Xi_c^0 \to \Xi^0(\pi^0/\eta/\eta') \text{ and } \alpha(\Xi_c^0 \to \Xi^0\pi^0)$

(Belle and Belle II), JHEP 10 (2024) 045

• Yields of ref. mode $N_{\rm sig}$: (B) 3.6×10^4 , (B2) 1.4×10^4 .

• Combine \mathcal{B} -results at Belle/Belle II: $\frac{\mathcal{B}(\Xi_c^0 \to \Xi^0 \pi^0)}{\mathcal{B}(\Xi_c^0 \to \Xi^- \pi^+)} = 0.48 \pm 0.02 \pm 0.03$ $\frac{\mathcal{B}(\Xi_c^0 \to \Xi^- \eta)}{\mathcal{B}(\Xi_c^0 \to \Xi^- \pi^+)} = 0.11 \pm 0.01 \pm 0.01$ $\frac{\mathcal{B}(\Xi_c^0 \to \Xi^- \pi^+)}{\mathcal{B}(\Xi_c^0 \to \Xi^- \pi^+)} = 0.08 \pm 0.02 \pm 0.01$

-

- In $1/2^+ \rightarrow 1/2^+ + 0^-$, decay asymmetry parameter $\boxed{\alpha \equiv 2 \cdot \text{Re}(S^*P)/(|S|^2 + |P|^2)}$, where S and P denote the parity-violating S-wave and parity-conserving P-wave amplitudes, respectively.
- The differential decay rate of $\Xi_c^0 \to \Xi^0 h^0$: $\frac{dN}{d\cos\theta_{\Xi_c^0}} \propto 1 + \alpha(\Xi_c^0 \to \Xi^0 h^0) \alpha(\Xi^0 \to \Lambda \pi^0) \cos\theta_{\Xi^0}.$
- Simultaneous fit result:

• Comparison results with predictions:

イロト イヨト イヨト イヨト